Skip to content

[Bug] OpenGVLab/InternVL3-14B 使用lora适配器参数起服务后会报错TypeError: load_lora_weights() missing 1 required positional argument: 'adapter_id' #4105

@HsinHui-Tseng

Description

@HsinHui-Tseng

Checklist

  • 1. I have searched related issues but cannot get the expected help.
  • 2. The bug has not been fixed in the latest version.
  • 3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.

Describe the bug

一开始我使用以下这个指令运行模型

lmdeploy serve api_server OpenGVLab/InternVL3-14B --adapters mylora=HsinHui04/internvl3-14b-lora-mdc-advice

虽然没有报错,但至 http://127.0.0.1:23333/v1/models 看我的模型并未load到我的lora,结果如下

{
  "object": "list",
  "data": [
    {
      "id": "OpenGVLab/InternVL3-14B",
      "object": "model",
      "created": 1762411649,
      "owned_by": "lmdeploy",
      "root": "OpenGVLab/InternVL3-14B",
      "parent": null,
      "permission": [
        {
          "id": "modelperm-UEgHEbY28jJhDch6Kkswwc",
          "object": "model_permission",
          "created": 1762411649,
          "allow_create_engine": false,
          "allow_sampling": true,
          "allow_logprobs": true,
          "allow_search_indices": true,
          "allow_view": true,
          "allow_fine_tuning": false,
          "organization": "*",
          "group": null,
          "is_blocking": false
        }
      ]
    }
  ]
}

参考#3594后,我尝试在指令加上--backend pytorch,lora有从huggingface载进去,指令如下

lmdeploy serve api_server OpenGVLab/InternVL3-14B \
	--adapters mylora=HsinHui04/internvl3-14b-lora-mdc-advice \
	--backend pytorch

但会报TypeError: load_lora_weights() missing 1 required positional argument: 'adapter_id'

所以想询问这是因为 LMDeploy 暂不支持 InternVL3-14B使用lora吗?

Reproduction

lmdeploy serve api_server OpenGVLab/InternVL3-14B
--adapters mylora=HsinHui04/internvl3-14b-lora-mdc-advice
--backend pytorch

Environment

lmdeploy check_env
/home/heimer_lan/lmdeploy_0.10.2-ms-swift/lib/python3.12/site-packages/torch/cuda/__init__.py:63: FutureWarning: The pynvml package is deprecated. Please install nvidia-ml-py instead. If you did not install pynvml directly, please report this to the maintainers of the package that installed pynvml for you.
  import pynvml  # type: ignore[import]
sys.platform: linux
Python: 3.12.3 (main, Aug 14 2025, 17:47:21) [GCC 13.3.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 2147483648
GPU 0: NVIDIA H100 80GB HBM3
CUDA_HOME: /usr/local/cuda-12.4
NVCC: Cuda compilation tools, release 12.4, V12.4.99
GCC: x86_64-linux-gnu-gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
PyTorch: 2.8.0+cu128
PyTorch compiling details: PyTorch built with:
  - GCC 13.3
  - C++ Version: 201703
  - Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v3.7.1 (Git Hash 8d263e693366ef8db40acc569cc7d8edf644556d)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX512
  - CUDA Runtime 12.8
  - NVCC architecture flags: -gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90;-gencode;arch=compute_100,code=sm_100;-gencode;arch=compute_120,code=sm_120
  - CuDNN 91.0.2  (built against CUDA 12.9)
    - Built with CuDNN 90.8
  - Magma 2.6.1
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, COMMIT_SHA=a1cb3cc05d46d198467bebbb6e8fba50a325d4e7, CUDA_VERSION=12.8, CUDNN_VERSION=9.8.0, CXX_COMPILER=/opt/rh/gcc-toolset-13/root/usr/bin/c++, CXX_FLAGS= -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -DC10_NODEPRECATED -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=range-loop-construct -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -faligned-new -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-dangling-reference -Wno-error=dangling-reference -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.8.0, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF, USE_XCCL=OFF, USE_XPU=OFF, 

TorchVision: 0.23.0+cu128
LMDeploy: 0.10.2+
transformers: 4.57.1
fastapi: 0.121.0
pydantic: 2.11.10
triton: 3.4.0
NVIDIA Topology: 
	GPU0	CPU Affinity	NUMA Affinity	GPU NUMA ID
GPU0	 X 	0-25	0		N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

Error traceback

Traceback (most recent call last):
  File "/usr/lib/python3.12/multiprocessing/process.py", line 314, in _bootstrap
    self.run()
  File "/usr/lib/python3.12/multiprocessing/process.py", line 108, in run
    self._target(*self._args, **self._kwargs)
  File "/home/heimer_lan/lmdeploy_0.10.2-ms-swift/lib/python3.12/site-packages/lmdeploy/pytorch/engine/mp_engine/zmq_engine.py", line 92, in _mp_proc
    engine = Engine.from_pretrained(
             ^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/heimer_lan/lmdeploy_0.10.2-ms-swift/lib/python3.12/site-packages/lmdeploy/pytorch/engine/engine.py", line 456, in from_pretrained
    return cls(model_path=pretrained_model_name_or_path,
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/heimer_lan/lmdeploy_0.10.2-ms-swift/lib/python3.12/site-packages/lmdeploy/pytorch/engine/engine.py", line 383, in __init__
    self.executor.init()
  File "/home/heimer_lan/lmdeploy_0.10.2-ms-swift/lib/python3.12/site-packages/lmdeploy/pytorch/engine/executor/base.py", line 189, in init
    self.build_model()
  File "/home/heimer_lan/lmdeploy_0.10.2-ms-swift/lib/python3.12/site-packages/lmdeploy/pytorch/engine/executor/uni_executor.py", line 53, in build_model
    self.model_agent.build_model()
  File "/home/heimer_lan/lmdeploy_0.10.2-ms-swift/lib/python3.12/site-packages/lmdeploy/pytorch/engine/model_agent.py", line 950, in build_model
    self._build_model()
  File "/home/heimer_lan/lmdeploy_0.10.2-ms-swift/lib/python3.12/site-packages/lmdeploy/pytorch/engine/model_agent.py", line 943, in _build_model
    add_adapters(patched_model, adapters, dtype=self.model_config.dtype, device=device)
  File "/home/heimer_lan/lmdeploy_0.10.2-ms-swift/lib/python3.12/site-packages/torch/utils/_contextlib.py", line 120, in decorate_context
    return func(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^
  File "/home/heimer_lan/lmdeploy_0.10.2-ms-swift/lib/python3.12/site-packages/lmdeploy/pytorch/models/patch.py", line 330, in add_adapters
    model.load_lora_weights(state_dict.items(), adapter_id=adapter_id)
  File "/home/heimer_lan/lmdeploy_0.10.2-ms-swift/lib/python3.12/site-packages/lmdeploy/pytorch/models/internvl.py", line 934, in load_lora_weights
    return load_lora_weights(weights, adapter_id)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TypeError: load_lora_weights() missing 1 required positional argument: 'adapter_id'

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions