|
14 | 14 | model_name='internvla_n1', |
15 | 15 | ckpt_path='', |
16 | 16 | model_settings={ |
17 | | - 'env_num': 1, 'sim_num': 1, |
| 17 | + 'env_num': 1, |
| 18 | + 'sim_num': 1, |
18 | 19 | 'model_path': "checkpoints/InternVLA-N1", |
19 | | - 'camera_intrinsic': [ |
20 | | - [585.0, 0.0, 320.0], [0.0, 585.0, 240.0], [0.0, 0.0, 1.0] |
21 | | - ], |
22 | | - |
23 | | - 'width': 640, 'height': 480, 'hfov': 79, |
24 | | - 'resize_w': 384, 'resize_h': 384, |
| 20 | + 'camera_intrinsic': [[585.0, 0.0, 320.0], [0.0, 585.0, 240.0], [0.0, 0.0, 1.0]], |
| 21 | + 'width': 640, |
| 22 | + 'height': 480, |
| 23 | + 'hfov': 79, |
| 24 | + 'resize_w': 384, |
| 25 | + 'resize_h': 384, |
25 | 26 | 'max_new_tokens': 1024, |
26 | 27 | 'num_frames': 32, |
27 | 28 | 'num_history': 8, |
28 | 29 | 'num_future_steps': 4, |
29 | | - |
30 | 30 | 'device': 'cuda:1', |
31 | 31 | 'predict_step_nums': 32, |
32 | | - 'continuous_traj': True, |
33 | | - |
34 | | - 'infer_mode': 'partial_async', # You can choose "sync" or "partial_async", but for this model, "partial_async" is better. |
| 32 | + 'continuous_traj': True, |
| 33 | + 'infer_mode': 'partial_async', # You can choose "sync" or "partial_async", but for this model, "partial_async" is better. |
35 | 34 | # debug |
36 | | - 'vis_debug': True, # If vis_debug=True, you can get visualization results |
37 | | - 'vis_debug_path': './logs/test/vis_debug' |
| 35 | + 'vis_debug': True, # If vis_debug=True, you can get visualization results |
| 36 | + 'vis_debug_path': './logs/test/vis_debug', |
38 | 37 | }, |
39 | 38 | ), |
40 | 39 | env=EnvCfg( |
41 | 40 | env_type='vln_multi', |
42 | 41 | env_settings={ |
43 | | - 'use_fabric': False, # Please set use_fabric=False due to the render delay; |
| 42 | + 'rendering_interval': 0, # You can set rendering_interval=0 to avoid the render delay. |
| 43 | + 'use_fabric': True, |
44 | 44 | 'headless': True, |
45 | 45 | }, |
46 | 46 | ), |
47 | 47 | task=TaskCfg( |
48 | 48 | task_name='test', |
49 | 49 | task_settings={ |
50 | 50 | 'env_num': 1, |
51 | | - 'use_distributed': False, # If the others setting in task_settings, please set use_distributed = False. |
| 51 | + 'use_distributed': False, # If the others setting in task_settings, please set use_distributed = False. |
52 | 52 | 'proc_num': 1, |
53 | | - # 'max_step': 1000, #If use flash mode,default 1000; descrete mode, set 50000 |
| 53 | + # 'max_step': 1000, #If use flash mode,default 1000; descrete mode, set 50000 |
54 | 54 | }, |
55 | 55 | scene=SceneCfg( |
56 | 56 | scene_type='mp3d', |
57 | 57 | scene_data_dir='data/scene_data/mp3d_pe', |
58 | 58 | ), |
59 | 59 | robot_name='h1', |
60 | | - robot_flash=True, # If robot_flash is True, the mode is flash (set world_pose directly); else you choose physical mode. |
| 60 | + robot_flash=True, # If robot_flash is True, the mode is flash (set world_pose directly); else you choose physical mode. |
61 | 61 | robot_usd_path='data/Embodiments/vln-pe/h1/h1_internvla.usd', |
62 | | - camera_resolution=[640, 480], # (W,H) |
| 62 | + camera_resolution=[640, 480], # (W,H) |
63 | 63 | camera_prim_path='torso_link/h1_1_25_down_30', |
64 | | - one_step_stand_still = True, #For dual-system, please keep this param True. |
| 64 | + one_step_stand_still=True, # For dual-system, please keep this param True. |
65 | 65 | ), |
66 | 66 | dataset=EvalDatasetCfg( |
67 | 67 | dataset_type="mp3d", |
68 | 68 | dataset_settings={ |
69 | 69 | 'base_data_dir': 'data/vln_pe/raw_data/r2r', |
70 | 70 | 'split_data_types': ['val_seen', 'val_unseen'], # 'val_seen' |
71 | | - 'filter_stairs': False, # For iros challenge, this is False; For results in the paper, this is True. |
| 71 | + 'filter_stairs': False, # For iros challenge, this is False; For results in the paper, this is True. |
72 | 72 | # 'selected_scans': ['zsNo4HB9uLZ'], |
73 | 73 | # 'selected_scans': ['8194nk5LbLH', 'pLe4wQe7qrG'], |
74 | 74 | }, |
|
0 commit comments