|
| 1 | +--- |
| 2 | +sidebar_position: 4 |
| 3 | +--- |
| 4 | + |
| 5 | +# Implementing a Connector |
| 6 | + |
| 7 | +:::tip Pro Tip: Use an AI Coding Assistant |
| 8 | +The fastest way to implement a new adapter is to use an AI coding assistant like the **Gemini CLI**, **Cursor**, or **Claude**. |
| 9 | + |
| 10 | +1. **Provide Context:** Give the assistant the code for an existing, similar adapter (e.g., `SnowflakeAdapter` or `DatabricksAdapter`). |
| 11 | +2. **State Your Goal:** Ask it to replicate the structure and logic for your new data source. For example: *"Using the Snowflake adapter as a reference, create a new adapter for MyConnector."* |
| 12 | +3. **Iterate:** The assistant can generate the boilerplate code for the models, the adapter class, and the registration functions, allowing you to focus on the specific implementation details for your database driver. |
| 13 | +::: |
| 14 | + |
| 15 | +`intugle` is designed to be extensible, allowing you to connect to any data source by creating a custom adapter. This guide walks you through the process of building your own connector. |
| 16 | + |
| 17 | +If you build a connector that could benefit the community, we strongly encourage you to [open a pull request and contribute it](https://github.com/Intugle/data-tools/blob/main/CONTRIBUTING.md) to the `intugle` project! |
| 18 | + |
| 19 | +## Overview |
| 20 | + |
| 21 | +An adapter is a Python class that inherits from `intugle.adapters.adapter.Adapter` and implements a set of methods for interacting with a specific data source. It handles everything from connecting to the database to profiling data and executing queries. |
| 22 | + |
| 23 | +The core steps to create a new connector are: |
| 24 | +1. **Create the Scaffolding:** Set up the necessary directory and files. |
| 25 | +2. **Define Configuration Models:** Create Pydantic models for your connector's configuration. |
| 26 | +3. **Implement the Adapter Class:** Write the logic to interact with your data source. |
| 27 | +4. **Register the Adapter:** Make your new adapter discoverable by the `intugle` factory. |
| 28 | + |
| 29 | +## Step 1: Create the Scaffolding |
| 30 | + |
| 31 | +First, create a new directory for your connector within the `src/intugle/adapters/types/` directory. For a connector named `myconnector`, you would create: |
| 32 | + |
| 33 | +``` |
| 34 | +src/intugle/adapters/types/myconnector/ |
| 35 | +├── __init__.py |
| 36 | +├── models.py |
| 37 | +└── myconnector.py |
| 38 | +``` |
| 39 | + |
| 40 | +- `__init__.py`: Can be an empty file. |
| 41 | +- `models.py`: Will contain the Pydantic configuration models. |
| 42 | +- `myconnector.py`: Will contain the main adapter class logic. |
| 43 | + |
| 44 | +## Step 2: Define Configuration Models |
| 45 | + |
| 46 | +In `src/intugle/adapters/types/myconnector/models.py`, you need to define two Pydantic models: |
| 47 | + |
| 48 | +1. **Connection Config:** Defines the parameters needed to connect to your data source (e.g., host, user, password). This will be the format that will be picked up from the profiles.yml |
| 49 | +2. **Data Config:** Defines how to identify a specific table or asset from that source. This will be the format that will be used to pass the datasets into the SemanticModel |
| 50 | + |
| 51 | +**Example `models.py`:** |
| 52 | +```python |
| 53 | +from typing import Optional |
| 54 | +from intugle.common.schema import SchemaBase |
| 55 | + |
| 56 | +class MyConnectorConnectionConfig(SchemaBase): |
| 57 | + host: str |
| 58 | + port: int |
| 59 | + user: str |
| 60 | + password: str |
| 61 | + schema: Optional[str] = None |
| 62 | + |
| 63 | +class MyConnectorConfig(SchemaBase): |
| 64 | + identifier: str |
| 65 | + type: str = "myconnector" |
| 66 | +``` |
| 67 | + |
| 68 | +Finally, open `src/intugle/adapters/models.py` and add your new `MyConnectorConfig` to the `DataSetData` type hint: |
| 69 | + |
| 70 | +```python |
| 71 | +# src/intugle/adapters/models.py |
| 72 | + |
| 73 | +# ... other imports |
| 74 | +from intugle.adapters.types.myconnector.models import MyConnectorConfig |
| 75 | + |
| 76 | +DataSetData = pd.DataFrame | DuckdbConfig | ... | MyConnectorConfig |
| 77 | +``` |
| 78 | + |
| 79 | +## Step 3: Implement the Adapter Class |
| 80 | + |
| 81 | +In `src/intugle/adapters/types/myconnector/myconnector.py`, create your adapter class. It must inherit from `Adapter` and implement its abstract methods. |
| 82 | + |
| 83 | +This is a simplified skeleton. You can look at the `DatabricksAdapter` or `SnowflakeAdapter` for a more complete example. |
| 84 | + |
| 85 | +**Example `myconnector.py`:** |
| 86 | +```python |
| 87 | +from typing import Any, Optional |
| 88 | +import pandas as pd |
| 89 | +from intugle.adapters.adapter import Adapter |
| 90 | +from intugle.adapters.factory import AdapterFactory |
| 91 | +from intugle.adapters.models import ColumnProfile, ProfilingOutput |
| 92 | +from .models import MyConnectorConfig, MyConnectorConnectionConfig |
| 93 | +from intugle.core import settings |
| 94 | + |
| 95 | +# Import your database driver |
| 96 | +# import myconnector_driver |
| 97 | + |
| 98 | +class MyConnectorAdapter(Adapter): |
| 99 | + def __init__(self): |
| 100 | + # Initialize your connection here |
| 101 | + connection_params = settings.PROFILES.get("myconnector", {}) |
| 102 | + config = MyConnectorConnectionConfig.model_validate(connection_params) |
| 103 | + # self.connection = myconnector_driver.connect(**config.model_dump()) |
| 104 | + pass |
| 105 | + |
| 106 | + # --- Must be implemented --- |
| 107 | + |
| 108 | + def profile(self, data: Any, table_name: str) -> ProfilingOutput: |
| 109 | + # Return table-level metadata: row count, column names, and dtypes |
| 110 | + raise NotImplementedError() |
| 111 | + |
| 112 | + def column_profile(self, data: Any, table_name: str, column_name: str, total_count: int) -> Optional[ColumnProfile]: |
| 113 | + # Return column-level statistics: null count, distinct count, samples, etc. |
| 114 | + raise NotImplementedError() |
| 115 | + |
| 116 | + def execute(self, query: str): |
| 117 | + # Execute a query and return the raw results |
| 118 | + raise NotImplementedError() |
| 119 | + |
| 120 | + def to_df_from_query(self, query: str) -> pd.DataFrame: |
| 121 | + # Execute a query and return the result as a pandas DataFrame |
| 122 | + raise NotImplementedError() |
| 123 | + |
| 124 | + def create_table_from_query(self, table_name: str, query: str) -> str: |
| 125 | + # Materialize a query as a new table or view |
| 126 | + raise NotImplementedError() |
| 127 | + |
| 128 | + def create_new_config_from_etl(self, etl_name: str) -> "DataSetData": |
| 129 | + # Return a new MyConnectorConfig for a materialized table |
| 130 | + return MyConnectorConfig(identifier=etl_name) |
| 131 | + |
| 132 | + def intersect_count(self, table1: "DataSet", column1_name: str, table2: "DataSet", column2_name: str) -> int: |
| 133 | + # Calculate the count of intersecting values between two columns |
| 134 | + raise NotImplementedError() |
| 135 | + |
| 136 | + # --- Other required methods --- |
| 137 | + |
| 138 | + def load(self, data: Any, table_name: str): |
| 139 | + # For database adapters, this is often a no-op |
| 140 | + pass |
| 141 | + |
| 142 | + def to_df(self, data: DataSetData, table_name: str): |
| 143 | + # Read an entire table into a pandas DataFrame |
| 144 | + config = MyConnectorConfig.model_validate(data) |
| 145 | + return self.to_df_from_query(f"SELECT * FROM {config.identifier}") |
| 146 | + |
| 147 | + def get_details(self, data: DataSetData): |
| 148 | + config = MyConnectorConfig.model_validate(data) |
| 149 | + return config.model_dump() |
| 150 | +``` |
| 151 | + |
| 152 | +## Step 4: Register the Adapter |
| 153 | + |
| 154 | +To make `intugle` aware of your new adapter, you must register it with the factory. |
| 155 | + |
| 156 | +1. **Add registration functions to `myconnector.py`:** At the bottom of your adapter file, add two functions: one to check if the adapter can handle a given data config, and one to register it with the factory. |
| 157 | + |
| 158 | + ```python |
| 159 | + # In src/intugle/adapters/types/myconnector/myconnector.py |
| 160 | + |
| 161 | + def can_handle_myconnector(df: Any) -> bool: |
| 162 | + try: |
| 163 | + MyConnectorConfig.model_validate(df) |
| 164 | + return True |
| 165 | + except Exception: |
| 166 | + return False |
| 167 | + |
| 168 | + def register(factory: AdapterFactory): |
| 169 | + # Check if the required driver is installed |
| 170 | + # if MYCONNECTOR_DRIVER_AVAILABLE: |
| 171 | + factory.register("myconnector", can_handle_myconnector, MyConnectorAdapter) |
| 172 | + ``` |
| 173 | + |
| 174 | +2. **Add the adapter to the default plugins list:** Open `src/intugle/adapters/factory.py` and add the path to your new adapter module. |
| 175 | + |
| 176 | + ```python |
| 177 | + # In src/intugle/adapters/factory.py |
| 178 | + |
| 179 | + DEFAULT_PLUGINS = [ |
| 180 | + "intugle.adapters.types.pandas.pandas", |
| 181 | + # ... other adapters |
| 182 | + "intugle.adapters.types.myconnector.myconnector", |
| 183 | + ] |
| 184 | + ``` |
| 185 | + |
| 186 | +## Step 5: Add Optional Dependencies |
| 187 | + |
| 188 | +If your adapter requires a specific driver library (like `databricks-sql-connector` for Databricks), you should add it as an optional dependency. |
| 189 | + |
| 190 | +1. Open the `pyproject.toml` file at the root of the project. |
| 191 | +2. Add a new extra under the `[project.optional-dependencies]` section. |
| 192 | + |
| 193 | + ```toml |
| 194 | + # In pyproject.toml |
| 195 | + |
| 196 | + [project.optional-dependencies] |
| 197 | + # ... other dependencies |
| 198 | + myconnector = ["myconnector-driver-library>=1.0.0"] |
| 199 | + ``` |
| 200 | + |
| 201 | +This allows users to install the necessary libraries by running `pip install "intugle[myconnector]"`. |
| 202 | + |
| 203 | +That's it! You have now implemented and registered a custom connector. |
0 commit comments