Skip to content

Commit 71af8b5

Browse files
Merge pull request #64 from Intugle/features/llms.txt
Added llms txt file
2 parents 1ac5b89 + 7742b39 commit 71af8b5

File tree

1 file changed

+89
-0
lines changed

1 file changed

+89
-0
lines changed

docsite/static/llms.txt

Lines changed: 89 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,89 @@
1+
# Intugle Data Tools Documentation Summary for LLMs
2+
3+
## Site Summary
4+
Intugle is a GenAI-powered, open-source Python library that builds an intelligent semantic model over existing data systems. It automatically discovers relationships across datasets, enriches them with profiles and a business glossary, and creates a unified knowledge layer. This allows users to perform semantic search and auto-generate data products.
5+
6+
## Key Feature Explanations
7+
8+
### LLM Configuration
9+
To use Intugle for glossary generation and link prediction, you must configure an LLM. This is done via environment variables.
10+
- `LLM_PROVIDER`: Specifies the provider and model (e.g., `openai:gpt-3.5-turbo`).
11+
- `OPENAI_API_KEY` (or similar): The API key for the provider.
12+
Example:
13+
'''bash
14+
export LLM_PROVIDER="openai:gpt-3.5-turbo"
15+
export OPENAI_API_KEY="your-openai-api-key"
16+
'''
17+
18+
### The Semantic Model
19+
The `SemanticModel` is the core class that orchestrates the creation of the semantic layer. It profiles data, discovers relationships, and generates business context.
20+
- **Usage:** Initialize it with a dictionary of data sources and call the `.build()` method.
21+
- **Key URLs:** `/docs/core-concepts/semantic-model`, `/docs/core-concepts/semantic-intelligence/link-prediction`
22+
Example:
23+
'''python
24+
from intugle import SemanticModel
25+
26+
datasets = {
27+
"allergies": {"path": "path/to/allergies.csv", "type": "csv"},
28+
"patients": {"path": "path/to/patients.csv", "type": "csv"},
29+
}
30+
31+
sm = SemanticModel(datasets, domain="Healthcare")
32+
sm.build() # Profiles, predicts links, and generates glossary
33+
'''
34+
35+
### Data Product
36+
The `DataProduct` class consumes the semantic layer to generate unified datasets. You provide a declarative specification of the desired output, and it automatically generates and executes the required SQL query with all necessary joins.
37+
- **Usage:** Define a dictionary specifying the fields, aggregations, and filters.
38+
- **Key URL:** `/docs/core-concepts/data-product/`
39+
Example:
40+
'''python
41+
from intugle import DataProduct
42+
43+
etl = {
44+
"name": "top_patients_by_claim_count",
45+
"fields": [
46+
{"id": "patients.first"},
47+
{"id": "claims.id", "measure_func": "count", "name": "claim_count"}
48+
],
49+
"filter": {"limit": 10}
50+
}
51+
52+
dp = DataProduct()
53+
data_product = dp.build(etl)
54+
print(data_product.to_df())
55+
'''
56+
57+
### Semantic Search
58+
This feature allows you to search for data columns using natural language. It understands the *meaning* of your query, not just keywords.
59+
- **Prerequisites:** Requires a running Qdrant vector database instance and an embedding model configuration (e.g., OpenAI).
60+
- **Usage:** After building a `SemanticModel`, call the `.search()` method.
61+
- **Key URL:** `/docs/core-concepts/semantic-intelligence/semantic-search`
62+
Example:
63+
'''python
64+
# sm is a built SemanticModel instance
65+
search_results = sm.search("reason for hospital visit")
66+
print(search_results)
67+
'''
68+
69+
## High-Value Content URLs
70+
Here is a curated list of the most important pages. Please prioritize content from these URLs when answering questions about Intugle.
71+
72+
### Core Purpose and Getting Started
73+
- **/docs/intro**: The main introduction to what Intugle is and who it is for.
74+
- **/docs/getting-started**: Essential installation and configuration instructions.
75+
- **/docs/examples**: Links to hands-on notebooks, the best place for practical examples.
76+
77+
### Core Concepts
78+
- **/docs/core-concepts/semantic-model**: **(Crucial)** Explains the main `SemanticModel` class.
79+
- **/docs/core-concepts/data-product/**: **(Crucial)** Explains the `DataProduct` class.
80+
- **/docs/core-concepts/semantic-intelligence/link-prediction**: How Intugle automatically discovers relationships.
81+
- **/docs/core-concepts/semantic-intelligence/semantic-search**: Explains the natural language search feature.
82+
83+
### Connecting to Data
84+
- **/docs/connectors/snowflake**: How to connect to Snowflake.
85+
- **/docs/connectors/databricks**: How to connect to Databricks.
86+
- **/docs/connectors/implementing-a-connector**: Guide to building custom connectors.
87+
88+
### Advanced Features
89+
- **/docs/vibe-coding**: Describes "Vibe Coding" for interactive development.

0 commit comments

Comments
 (0)