| 
 | 1 | +## CacheDiT    | 
 | 2 | + | 
 | 3 | +CacheDiT is a unified, flexible, and training-free cache acceleration framework designed to support nearly all Diffusers' DiT-based pipelines. It provides a unified cache API that supports automatic block adapter, DBCache, and more.  | 
 | 4 | + | 
 | 5 | +To learn more, refer to the [CacheDiT](https://github.com/vipshop/cache-dit) repository.  | 
 | 6 | + | 
 | 7 | +Install a stable release of CacheDiT from PyPI or you can install the latest version from GitHub.  | 
 | 8 | + | 
 | 9 | +<hfoptions id="install">  | 
 | 10 | +<hfoption id="PyPI">  | 
 | 11 | + | 
 | 12 | +```bash  | 
 | 13 | +pip3 install -U cache-dit  | 
 | 14 | +```  | 
 | 15 | + | 
 | 16 | +</hfoption>  | 
 | 17 | +<hfoption id="source">  | 
 | 18 | + | 
 | 19 | +```bash  | 
 | 20 | +pip3 install git+https://github.com/vipshop/cache-dit.git  | 
 | 21 | +```  | 
 | 22 | + | 
 | 23 | +</hfoption>  | 
 | 24 | +</hfoptions>  | 
 | 25 | + | 
 | 26 | +Run the command below to view supported DiT pipelines.  | 
 | 27 | + | 
 | 28 | +```python  | 
 | 29 | +>>> import cache_dit  | 
 | 30 | +>>> cache_dit.supported_pipelines()  | 
 | 31 | +(30, ['Flux*', 'Mochi*', 'CogVideoX*', 'Wan*', 'HunyuanVideo*', 'QwenImage*', 'LTX*', 'Allegro*',  | 
 | 32 | +'CogView3Plus*', 'CogView4*', 'Cosmos*', 'EasyAnimate*', 'SkyReelsV2*', 'StableDiffusion3*',  | 
 | 33 | +'ConsisID*', 'DiT*', 'Amused*', 'Bria*', 'Lumina*', 'OmniGen*', 'PixArt*', 'Sana*', 'StableAudio*',  | 
 | 34 | +'VisualCloze*', 'AuraFlow*', 'Chroma*', 'ShapE*', 'HiDream*', 'HunyuanDiT*', 'HunyuanDiTPAG*'])  | 
 | 35 | +```  | 
 | 36 | + | 
 | 37 | +For a complete benchmark, please refer to [Benchmarks](https://github.com/vipshop/cache-dit/blob/main/bench/).  | 
 | 38 | + | 
 | 39 | + | 
 | 40 | +## Unified Cache API  | 
 | 41 | + | 
 | 42 | +CacheDiT works by matching specific input/output patterns as shown below.  | 
 | 43 | + | 
 | 44 | +  | 
 | 45 | + | 
 | 46 | +Call the `enable_cache()` function on a pipeline to enable cache acceleration. This function is the entry point to many of CacheDiT's features.  | 
 | 47 | + | 
 | 48 | +```python  | 
 | 49 | +import cache_dit  | 
 | 50 | +from diffusers import DiffusionPipeline   | 
 | 51 | + | 
 | 52 | +# Can be any diffusion pipeline  | 
 | 53 | +pipe = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image")  | 
 | 54 | + | 
 | 55 | +# One-line code with default cache options.  | 
 | 56 | +cache_dit.enable_cache(pipe)   | 
 | 57 | + | 
 | 58 | +# Just call the pipe as normal.  | 
 | 59 | +output = pipe(...)  | 
 | 60 | + | 
 | 61 | +# Disable cache and run original pipe.  | 
 | 62 | +cache_dit.disable_cache(pipe)  | 
 | 63 | +```  | 
 | 64 | + | 
 | 65 | +## Automatic Block Adapter  | 
 | 66 | + | 
 | 67 | +For custom or modified pipelines or transformers not included in Diffusers, use the `BlockAdapter` in `auto` mode or via manual configuration. Please check the [BlockAdapter](https://github.com/vipshop/cache-dit/blob/main/docs/User_Guide.md#automatic-block-adapter) docs for more details. Refer to [Qwen-Image w/ BlockAdapter](https://github.com/vipshop/cache-dit/blob/main/examples/adapter/run_qwen_image_adapter.py) as an example.  | 
 | 68 | + | 
 | 69 | + | 
 | 70 | +```python  | 
 | 71 | +from cache_dit import ForwardPattern, BlockAdapter  | 
 | 72 | + | 
 | 73 | +# Use 🔥BlockAdapter with `auto` mode.  | 
 | 74 | +cache_dit.enable_cache(  | 
 | 75 | +    BlockAdapter(  | 
 | 76 | +        # Any DiffusionPipeline, Qwen-Image, etc.    | 
 | 77 | +        pipe=pipe, auto=True,  | 
 | 78 | +        # Check `📚Forward Pattern Matching` documentation and hack the code of  | 
 | 79 | +        # of Qwen-Image, you will find that it has satisfied `FORWARD_PATTERN_1`.  | 
 | 80 | +        forward_pattern=ForwardPattern.Pattern_1,  | 
 | 81 | +    ),     | 
 | 82 | +)  | 
 | 83 | + | 
 | 84 | +# Or, manually setup transformer configurations.  | 
 | 85 | +cache_dit.enable_cache(  | 
 | 86 | +    BlockAdapter(  | 
 | 87 | +        pipe=pipe, # Qwen-Image, etc.  | 
 | 88 | +        transformer=pipe.transformer,  | 
 | 89 | +        blocks=pipe.transformer.transformer_blocks,  | 
 | 90 | +        forward_pattern=ForwardPattern.Pattern_1,  | 
 | 91 | +    ),   | 
 | 92 | +)  | 
 | 93 | +```  | 
 | 94 | + | 
 | 95 | +Sometimes, a Transformer class will contain more than one transformer `blocks`. For example, FLUX.1 (HiDream, Chroma, etc) contains `transformer_blocks` and `single_transformer_blocks` (with different forward patterns). The BlockAdapter is able to detect this hybrid pattern type as well.   | 
 | 96 | +Refer to [FLUX.1](https://github.com/vipshop/cache-dit/blob/main/examples/adapter/run_flux_adapter.py) as an example.  | 
 | 97 | + | 
 | 98 | +```python  | 
 | 99 | +# For diffusers <= 0.34.0, FLUX.1 transformer_blocks and   | 
 | 100 | +# single_transformer_blocks have different forward patterns.  | 
 | 101 | +cache_dit.enable_cache(  | 
 | 102 | +    BlockAdapter(  | 
 | 103 | +        pipe=pipe, # FLUX.1, etc.  | 
 | 104 | +        transformer=pipe.transformer,  | 
 | 105 | +        blocks=[  | 
 | 106 | +            pipe.transformer.transformer_blocks,  | 
 | 107 | +            pipe.transformer.single_transformer_blocks,  | 
 | 108 | +        ],  | 
 | 109 | +        forward_pattern=[  | 
 | 110 | +            ForwardPattern.Pattern_1,  | 
 | 111 | +            ForwardPattern.Pattern_3,  | 
 | 112 | +        ],  | 
 | 113 | +    ),  | 
 | 114 | +)  | 
 | 115 | +```  | 
 | 116 | + | 
 | 117 | +This also works if there is more than one transformer (namely `transformer` and `transformer_2`) in its structure. Refer to [Wan 2.2 MoE](https://github.com/vipshop/cache-dit/blob/main/examples/pipeline/run_wan_2.2.py) as an example.  | 
 | 118 | + | 
 | 119 | +## Patch Functor  | 
 | 120 | + | 
 | 121 | +For any pattern not included in CacheDiT, use the Patch Functor to convert the pattern into a known pattern. You need to subclass the Patch Functor and may also need to fuse the operations within the blocks for loop into block `forward`. After implementing a Patch Functor, set the `patch_functor` property in `BlockAdapter`.  | 
 | 122 | + | 
 | 123 | +  | 
 | 124 | + | 
 | 125 | +Some Patch Functors are already provided in CacheDiT, [HiDreamPatchFunctor](https://github.com/vipshop/cache-dit/blob/main/src/cache_dit/cache_factory/patch_functors/functor_hidream.py), [ChromaPatchFunctor](https://github.com/vipshop/cache-dit/blob/main/src/cache_dit/cache_factory/patch_functors/functor_chroma.py), etc.  | 
 | 126 | + | 
 | 127 | +```python  | 
 | 128 | +@BlockAdapterRegistry.register("HiDream")  | 
 | 129 | +def hidream_adapter(pipe, **kwargs) -> BlockAdapter:  | 
 | 130 | +    from diffusers import HiDreamImageTransformer2DModel  | 
 | 131 | +    from cache_dit.cache_factory.patch_functors import HiDreamPatchFunctor  | 
 | 132 | + | 
 | 133 | +    assert isinstance(pipe.transformer, HiDreamImageTransformer2DModel)  | 
 | 134 | +    return BlockAdapter(  | 
 | 135 | +        pipe=pipe,  | 
 | 136 | +        transformer=pipe.transformer,  | 
 | 137 | +        blocks=[  | 
 | 138 | +            pipe.transformer.double_stream_blocks,  | 
 | 139 | +            pipe.transformer.single_stream_blocks,  | 
 | 140 | +        ],  | 
 | 141 | +        forward_pattern=[  | 
 | 142 | +            ForwardPattern.Pattern_0,  | 
 | 143 | +            ForwardPattern.Pattern_3,  | 
 | 144 | +        ],  | 
 | 145 | +        # NOTE: Setup your custom patch functor here.  | 
 | 146 | +        patch_functor=HiDreamPatchFunctor(),  | 
 | 147 | +        **kwargs,  | 
 | 148 | +    )  | 
 | 149 | +```  | 
 | 150 | + | 
 | 151 | +Finally, you can call the `cache_dit.summary()` function on a pipeline after its completed inference to get the cache acceleration details.  | 
 | 152 | + | 
 | 153 | +```python  | 
 | 154 | +stats = cache_dit.summary(pipe)  | 
 | 155 | +```  | 
 | 156 | + | 
 | 157 | +```python  | 
 | 158 | +⚡️Cache Steps and Residual Diffs Statistics: QwenImagePipeline  | 
 | 159 | + | 
 | 160 | +| Cache Steps | Diffs Min | Diffs P25 | Diffs P50 | Diffs P75 | Diffs P95 | Diffs Max |  | 
 | 161 | +|-------------|-----------|-----------|-----------|-----------|-----------|-----------|  | 
 | 162 | +| 23          | 0.045     | 0.084     | 0.114     | 0.147     | 0.241     | 0.297     |  | 
 | 163 | +```  | 
 | 164 | + | 
 | 165 | +## DBCache: Dual Block Cache    | 
 | 166 | + | 
 | 167 | +  | 
 | 168 | + | 
 | 169 | +DBCache (Dual Block Caching) supports different configurations of compute blocks (F8B12, etc.) to enable a balanced trade-off between performance and precision.  | 
 | 170 | +- Fn_compute_blocks: Specifies that DBCache uses the **first n** Transformer blocks to fit the information at time step t, enabling the calculation of a more stable L1 diff and delivering more accurate information to subsequent blocks.  | 
 | 171 | +- Bn_compute_blocks: Further fuses approximate information in the **last n** Transformer blocks to enhance prediction accuracy. These blocks act as an auto-scaler for approximate hidden states that use residual cache.  | 
 | 172 | + | 
 | 173 | + | 
 | 174 | +```python  | 
 | 175 | +import cache_dit  | 
 | 176 | +from diffusers import FluxPipeline  | 
 | 177 | + | 
 | 178 | +pipe_or_adapter = FluxPipeline.from_pretrained(  | 
 | 179 | +    "black-forest-labs/FLUX.1-dev",  | 
 | 180 | +    torch_dtype=torch.bfloat16,  | 
 | 181 | +).to("cuda")  | 
 | 182 | + | 
 | 183 | +# Default options, F8B0, 8 warmup steps, and unlimited cached   | 
 | 184 | +# steps for good balance between performance and precision  | 
 | 185 | +cache_dit.enable_cache(pipe_or_adapter)  | 
 | 186 | + | 
 | 187 | +# Custom options, F8B8, higher precision  | 
 | 188 | +from cache_dit import BasicCacheConfig  | 
 | 189 | + | 
 | 190 | +cache_dit.enable_cache(  | 
 | 191 | +    pipe_or_adapter,  | 
 | 192 | +    cache_config=BasicCacheConfig(  | 
 | 193 | +        max_warmup_steps=8,  # steps do not cache  | 
 | 194 | +        max_cached_steps=-1, # -1 means no limit  | 
 | 195 | +        Fn_compute_blocks=8, # Fn, F8, etc.  | 
 | 196 | +        Bn_compute_blocks=8, # Bn, B8, etc.  | 
 | 197 | +        residual_diff_threshold=0.12,  | 
 | 198 | +    ),  | 
 | 199 | +)  | 
 | 200 | +```    | 
 | 201 | +Check the [DBCache](https://github.com/vipshop/cache-dit/blob/main/docs/DBCache.md) and [User Guide](https://github.com/vipshop/cache-dit/blob/main/docs/User_Guide.md#dbcache) docs for more design details.  | 
 | 202 | + | 
 | 203 | +## TaylorSeer Calibrator  | 
 | 204 | + | 
 | 205 | +The [TaylorSeers](https://huggingface.co/papers/2503.06923) algorithm further improves the precision of DBCache in cases where the cached steps are large (Hybrid TaylorSeer + DBCache). At timesteps with significant intervals, the feature similarity in diffusion models decreases substantially, significantly harming the generation quality.   | 
 | 206 | + | 
 | 207 | +TaylorSeer employs a differential method to approximate the higher-order derivatives of features and predict features in future timesteps with Taylor series expansion. The TaylorSeer implemented in CacheDiT supports both hidden states and residual cache types. F_pred can be a residual cache or a hidden-state cache.  | 
 | 208 | + | 
 | 209 | +```python  | 
 | 210 | +from cache_dit import BasicCacheConfig, TaylorSeerCalibratorConfig  | 
 | 211 | + | 
 | 212 | +cache_dit.enable_cache(  | 
 | 213 | +    pipe_or_adapter,  | 
 | 214 | +    # Basic DBCache w/ FnBn configurations  | 
 | 215 | +    cache_config=BasicCacheConfig(  | 
 | 216 | +        max_warmup_steps=8,  # steps do not cache  | 
 | 217 | +        max_cached_steps=-1, # -1 means no limit  | 
 | 218 | +        Fn_compute_blocks=8, # Fn, F8, etc.  | 
 | 219 | +        Bn_compute_blocks=8, # Bn, B8, etc.  | 
 | 220 | +        residual_diff_threshold=0.12,  | 
 | 221 | +    ),  | 
 | 222 | +    # Then, you can use the TaylorSeer Calibrator to approximate   | 
 | 223 | +    # the values in cached steps, taylorseer_order default is 1.  | 
 | 224 | +    calibrator_config=TaylorSeerCalibratorConfig(  | 
 | 225 | +        taylorseer_order=1,  | 
 | 226 | +    ),  | 
 | 227 | +)  | 
 | 228 | +```   | 
 | 229 | + | 
 | 230 | +> [!TIP]    | 
 | 231 | +> The `Bn_compute_blocks` parameter of DBCache can be set to `0` if you use TaylorSeer as the calibrator for approximate hidden states. DBCache's `Bn_compute_blocks` also acts as a calibrator, so you can choose either `Bn_compute_blocks` > 0 or TaylorSeer. We recommend using the configuration scheme of TaylorSeer + DBCache FnB0.  | 
 | 232 | + | 
 | 233 | +## Hybrid Cache CFG  | 
 | 234 | + | 
 | 235 | +CacheDiT supports caching for CFG (classifier-free guidance). For models that fuse CFG and non-CFG into a single forward step, or models that do not include CFG in the forward step, please set `enable_separate_cfg` parameter  to `False (default, None)`. Otherwise, set it to `True`.   | 
 | 236 | + | 
 | 237 | +```python  | 
 | 238 | +from cache_dit import BasicCacheConfig  | 
 | 239 | + | 
 | 240 | +cache_dit.enable_cache(  | 
 | 241 | +    pipe_or_adapter,   | 
 | 242 | +    cache_config=BasicCacheConfig(  | 
 | 243 | +        ...,  | 
 | 244 | +        # For example, set it as True for Wan 2.1, Qwen-Image   | 
 | 245 | +        # and set it as False for FLUX.1, HunyuanVideo, etc.  | 
 | 246 | +        enable_separate_cfg=True,  | 
 | 247 | +    ),  | 
 | 248 | +)  | 
 | 249 | +```  | 
 | 250 | + | 
 | 251 | +## torch.compile  | 
 | 252 | + | 
 | 253 | +CacheDiT is designed to work with torch.compile for even better performance. Call `torch.compile` after enabling the cache.  | 
 | 254 | + | 
 | 255 | + | 
 | 256 | +```python  | 
 | 257 | +cache_dit.enable_cache(pipe)  | 
 | 258 | + | 
 | 259 | +# Compile the Transformer module  | 
 | 260 | +pipe.transformer = torch.compile(pipe.transformer)  | 
 | 261 | +```  | 
 | 262 | + | 
 | 263 | +If you're using CacheDiT with dynamic input shapes, consider increasing the `recompile_limit` of `torch._dynamo`. Otherwise, the `recompile_limit` error may be triggered, causing the module to fall back to eager mode.   | 
 | 264 | + | 
 | 265 | +```python  | 
 | 266 | +torch._dynamo.config.recompile_limit = 96  # default is 8  | 
 | 267 | +torch._dynamo.config.accumulated_recompile_limit = 2048  # default is 256  | 
 | 268 | +```  | 
 | 269 | + | 
 | 270 | +Please check [perf.py](https://github.com/vipshop/cache-dit/blob/main/bench/perf.py) for more details.  | 
0 commit comments