|
10 | 10 |
|
11 | 11 | from jdo.models.cleanup_plan import CleanupPlan, CleanupPlanStatus |
12 | 12 | from jdo.models.commitment import Commitment, CommitmentStatus |
13 | | -from jdo.models.integrity_metrics import IntegrityMetrics |
| 13 | +from jdo.models.integrity_metrics import ( |
| 14 | + TREND_THRESHOLD, |
| 15 | + IntegrityMetrics, |
| 16 | + TrendDirection, |
| 17 | +) |
14 | 18 | from jdo.models.stakeholder import Stakeholder |
15 | 19 | from jdo.models.task import Task, TaskStatus |
16 | 20 | from jdo.models.task_history import TaskEventType, TaskHistoryEntry |
|
25 | 29 | ACCURACY_DECAY_DAYS = 7 # Weight halves every 7 days |
26 | 30 | ACCURACY_MAX_AGE_DAYS = 90 # Maximum age for history consideration |
27 | 31 |
|
| 32 | +# Constants for trend calculation |
| 33 | +TREND_PERIOD_DAYS = 30 # Period for comparing metrics (30 days) |
| 34 | +AFFECTING_SCORE_DAYS = 30 # Days to look back for affecting commitments |
| 35 | +MAX_AFFECTING_COMMITMENTS = 5 # Maximum commitments to show in affecting list |
| 36 | + |
28 | 37 |
|
29 | 38 | @dataclass |
30 | 39 | class RiskSummary: |
@@ -117,6 +126,14 @@ class RecoveryResult: |
117 | 126 | notification_still_needed: bool |
118 | 127 |
|
119 | 128 |
|
| 129 | +@dataclass |
| 130 | +class AffectingCommitment: |
| 131 | + """A commitment that negatively affected the integrity score.""" |
| 132 | + |
| 133 | + commitment: Commitment |
| 134 | + reason: str # Why it affected the score (e.g., "completed late", "abandoned") |
| 135 | + |
| 136 | + |
120 | 137 | class IntegrityService: |
121 | 138 | """Service for managing the Honor-Your-Word integrity protocol. |
122 | 139 |
|
@@ -668,3 +685,256 @@ def _calculate_estimation_accuracy(self, session: Session) -> tuple[float, int]: |
668 | 685 | return 1.0, tasks_with_estimates |
669 | 686 |
|
670 | 687 | return weighted_accuracy / total_weight, tasks_with_estimates |
| 688 | + |
| 689 | + def calculate_integrity_metrics_with_trends(self, session: Session) -> IntegrityMetrics: |
| 690 | + """Calculate integrity metrics including trend indicators. |
| 691 | +
|
| 692 | + Compares current 30-day period with previous 30-day period to |
| 693 | + determine if metrics are improving, declining, or stable. |
| 694 | +
|
| 695 | + Args: |
| 696 | + session: Database session |
| 697 | +
|
| 698 | + Returns: |
| 699 | + IntegrityMetrics with trend fields populated |
| 700 | + """ |
| 701 | + # Get current metrics |
| 702 | + current = self.calculate_integrity_metrics(session) |
| 703 | + |
| 704 | + # Calculate previous period metrics for comparison |
| 705 | + now = datetime.now(UTC) |
| 706 | + cutoff = now - timedelta(days=TREND_PERIOD_DAYS) |
| 707 | + prev_cutoff = cutoff - timedelta(days=TREND_PERIOD_DAYS) |
| 708 | + |
| 709 | + # Calculate on-time rate for previous period |
| 710 | + prev_on_time_rate = self._calculate_period_on_time_rate(session, prev_cutoff, cutoff) |
| 711 | + |
| 712 | + # Calculate cleanup rate for previous period |
| 713 | + prev_cleanup_rate = self._calculate_period_cleanup_rate(session, prev_cutoff, cutoff) |
| 714 | + |
| 715 | + # Calculate notification timeliness for previous period |
| 716 | + prev_notification = self._calculate_period_notification_timeliness( |
| 717 | + session, prev_cutoff, cutoff |
| 718 | + ) |
| 719 | + |
| 720 | + # Determine trends |
| 721 | + on_time_trend = self._determine_trend(prev_on_time_rate, current.on_time_rate) |
| 722 | + notification_trend = self._determine_trend( |
| 723 | + prev_notification, current.notification_timeliness |
| 724 | + ) |
| 725 | + cleanup_trend = self._determine_trend(prev_cleanup_rate, current.cleanup_completion_rate) |
| 726 | + |
| 727 | + # Calculate overall trend from composite score |
| 728 | + prev_composite = ( |
| 729 | + prev_on_time_rate * 0.35 |
| 730 | + + prev_notification * 0.25 |
| 731 | + + prev_cleanup_rate * 0.25 |
| 732 | + + current.estimation_accuracy * 0.10 # Use current, no history |
| 733 | + + min(current.current_streak_weeks * 2, 5) / 100 |
| 734 | + ) * 100 |
| 735 | + overall_trend = self._determine_trend(prev_composite, current.composite_score) |
| 736 | + |
| 737 | + # Return metrics with trends |
| 738 | + return IntegrityMetrics( |
| 739 | + on_time_rate=current.on_time_rate, |
| 740 | + notification_timeliness=current.notification_timeliness, |
| 741 | + cleanup_completion_rate=current.cleanup_completion_rate, |
| 742 | + current_streak_weeks=current.current_streak_weeks, |
| 743 | + total_completed=current.total_completed, |
| 744 | + total_on_time=current.total_on_time, |
| 745 | + total_at_risk=current.total_at_risk, |
| 746 | + total_abandoned=current.total_abandoned, |
| 747 | + estimation_accuracy=current.estimation_accuracy, |
| 748 | + tasks_with_estimates=current.tasks_with_estimates, |
| 749 | + on_time_trend=on_time_trend, |
| 750 | + notification_trend=notification_trend, |
| 751 | + cleanup_trend=cleanup_trend, |
| 752 | + overall_trend=overall_trend, |
| 753 | + ) |
| 754 | + |
| 755 | + def _determine_trend(self, prev_value: float, curr_value: float) -> TrendDirection: |
| 756 | + """Determine trend direction between two values. |
| 757 | +
|
| 758 | + Args: |
| 759 | + prev_value: Previous period value |
| 760 | + curr_value: Current period value |
| 761 | +
|
| 762 | + Returns: |
| 763 | + TrendDirection indicating if value is improving, declining, or stable |
| 764 | + """ |
| 765 | + diff = curr_value - prev_value |
| 766 | + if diff > TREND_THRESHOLD: |
| 767 | + return TrendDirection.UP |
| 768 | + if diff < -TREND_THRESHOLD: |
| 769 | + return TrendDirection.DOWN |
| 770 | + return TrendDirection.STABLE |
| 771 | + |
| 772 | + def _calculate_period_on_time_rate( |
| 773 | + self, session: Session, start: datetime, end: datetime |
| 774 | + ) -> float: |
| 775 | + """Calculate on-time rate for a specific period. |
| 776 | +
|
| 777 | + Args: |
| 778 | + session: Database session |
| 779 | + start: Period start datetime |
| 780 | + end: Period end datetime |
| 781 | +
|
| 782 | + Returns: |
| 783 | + On-time rate (0.0-1.0), defaults to 1.0 if no data |
| 784 | + """ |
| 785 | + # Get completed commitments in period |
| 786 | + period_completed = session.exec( |
| 787 | + select(func.count()) |
| 788 | + .select_from(Commitment) |
| 789 | + .where( |
| 790 | + Commitment.status == CommitmentStatus.COMPLETED, |
| 791 | + Commitment.completed_at >= start, # type: ignore[operator] |
| 792 | + Commitment.completed_at < end, # type: ignore[operator] |
| 793 | + ) |
| 794 | + ).one() |
| 795 | + |
| 796 | + if period_completed == 0: |
| 797 | + return 1.0 # Clean slate for period |
| 798 | + |
| 799 | + period_on_time = session.exec( |
| 800 | + select(func.count()) |
| 801 | + .select_from(Commitment) |
| 802 | + .where( |
| 803 | + Commitment.status == CommitmentStatus.COMPLETED, |
| 804 | + Commitment.completed_at >= start, # type: ignore[operator] |
| 805 | + Commitment.completed_at < end, # type: ignore[operator] |
| 806 | + Commitment.completed_on_time == True, # noqa: E712 |
| 807 | + ) |
| 808 | + ).one() |
| 809 | + |
| 810 | + return period_on_time / period_completed |
| 811 | + |
| 812 | + def _calculate_period_cleanup_rate( |
| 813 | + self, session: Session, start: datetime, end: datetime |
| 814 | + ) -> float: |
| 815 | + """Calculate cleanup completion rate for a specific period. |
| 816 | +
|
| 817 | + Args: |
| 818 | + session: Database session |
| 819 | + start: Period start datetime |
| 820 | + end: Period end datetime |
| 821 | +
|
| 822 | + Returns: |
| 823 | + Cleanup rate (0.0-1.0), defaults to 1.0 if no data |
| 824 | + """ |
| 825 | + period_plans = session.exec( |
| 826 | + select(func.count()) |
| 827 | + .select_from(CleanupPlan) |
| 828 | + .where( |
| 829 | + CleanupPlan.created_at >= start, # type: ignore[operator] |
| 830 | + CleanupPlan.created_at < end, # type: ignore[operator] |
| 831 | + ) |
| 832 | + ).one() |
| 833 | + |
| 834 | + if period_plans == 0: |
| 835 | + return 1.0 # Clean slate for period |
| 836 | + |
| 837 | + period_completed = session.exec( |
| 838 | + select(func.count()) |
| 839 | + .select_from(CleanupPlan) |
| 840 | + .where( |
| 841 | + CleanupPlan.status == CleanupPlanStatus.COMPLETED, |
| 842 | + CleanupPlan.created_at >= start, # type: ignore[operator] |
| 843 | + CleanupPlan.created_at < end, # type: ignore[operator] |
| 844 | + ) |
| 845 | + ).one() |
| 846 | + |
| 847 | + return period_completed / period_plans |
| 848 | + |
| 849 | + def _calculate_period_notification_timeliness( |
| 850 | + self, session: Session, start: datetime, end: datetime |
| 851 | + ) -> float: |
| 852 | + """Calculate notification timeliness for a specific period. |
| 853 | +
|
| 854 | + Args: |
| 855 | + session: Database session |
| 856 | + start: Period start datetime |
| 857 | + end: Period end datetime |
| 858 | +
|
| 859 | + Returns: |
| 860 | + Timeliness score (0.0-1.0), defaults to 1.0 if no data |
| 861 | + """ |
| 862 | + # Get commitments marked at-risk in period |
| 863 | + at_risk_in_period = session.exec( |
| 864 | + select(Commitment).where( |
| 865 | + Commitment.marked_at_risk_at.is_not(None), # type: ignore[union-attr] |
| 866 | + Commitment.marked_at_risk_at >= start, # type: ignore[operator] |
| 867 | + Commitment.marked_at_risk_at < end, # type: ignore[operator] |
| 868 | + ) |
| 869 | + ).all() |
| 870 | + |
| 871 | + if not at_risk_in_period: |
| 872 | + return 1.0 # Clean slate for period |
| 873 | + |
| 874 | + total_score = 0.0 |
| 875 | + for commitment in at_risk_in_period: |
| 876 | + if commitment.marked_at_risk_at is None or commitment.due_date is None: |
| 877 | + continue |
| 878 | + |
| 879 | + marked_date = commitment.marked_at_risk_at.date() |
| 880 | + days_before_due = (commitment.due_date - marked_date).days |
| 881 | + |
| 882 | + if days_before_due >= 7: |
| 883 | + score = 1.0 |
| 884 | + elif days_before_due <= 0: |
| 885 | + score = 0.0 |
| 886 | + else: |
| 887 | + score = days_before_due / 7.0 |
| 888 | + |
| 889 | + total_score += score |
| 890 | + |
| 891 | + return total_score / len(at_risk_in_period) if at_risk_in_period else 1.0 |
| 892 | + |
| 893 | + def get_affecting_commitments(self, session: Session) -> list[AffectingCommitment]: |
| 894 | + """Get recent commitments that negatively affected the integrity score. |
| 895 | +
|
| 896 | + Returns commitments from the last 30 days where: |
| 897 | + - completed_on_time = False (late completion) |
| 898 | + - status = abandoned |
| 899 | +
|
| 900 | + Args: |
| 901 | + session: Database session |
| 902 | +
|
| 903 | + Returns: |
| 904 | + List of AffectingCommitment with reason for each |
| 905 | + """ |
| 906 | + now = datetime.now(UTC) |
| 907 | + cutoff = now - timedelta(days=AFFECTING_SCORE_DAYS) |
| 908 | + |
| 909 | + # Get late completions |
| 910 | + late_completions = session.exec( |
| 911 | + select(Commitment) |
| 912 | + .where( |
| 913 | + Commitment.status == CommitmentStatus.COMPLETED, |
| 914 | + Commitment.completed_on_time == False, # noqa: E712 |
| 915 | + Commitment.completed_at >= cutoff, # type: ignore[operator] |
| 916 | + ) |
| 917 | + .order_by(Commitment.completed_at.desc()) # type: ignore[union-attr] |
| 918 | + .limit(MAX_AFFECTING_COMMITMENTS) |
| 919 | + ).all() |
| 920 | + |
| 921 | + result: list[AffectingCommitment] = [ |
| 922 | + AffectingCommitment(commitment=c, reason="completed late") for c in late_completions |
| 923 | + ] |
| 924 | + |
| 925 | + # Get abandoned commitments |
| 926 | + remaining_slots = MAX_AFFECTING_COMMITMENTS - len(result) |
| 927 | + if remaining_slots > 0: |
| 928 | + abandoned = session.exec( |
| 929 | + select(Commitment) |
| 930 | + .where( |
| 931 | + Commitment.status == CommitmentStatus.ABANDONED, |
| 932 | + Commitment.updated_at >= cutoff, # type: ignore[operator] |
| 933 | + ) |
| 934 | + .order_by(Commitment.updated_at.desc()) # type: ignore[arg-type] |
| 935 | + .limit(remaining_slots) |
| 936 | + ).all() |
| 937 | + |
| 938 | + result.extend(AffectingCommitment(commitment=c, reason="abandoned") for c in abandoned) |
| 939 | + |
| 940 | + return result |
0 commit comments