|
| 1 | +# %% |
| 2 | +from gbmi.exp_indhead.train import ABCAB8_1H |
| 3 | +from torch import where |
| 4 | +from gbmi.model import train_or_load_model |
| 5 | +import torch |
| 6 | +from torch import tensor |
| 7 | +from math import * |
| 8 | +import plotly.express as px |
| 9 | +from gbmi.utils.sequences import generate_all_sequences |
| 10 | +import copy |
| 11 | +from inspect import signature |
| 12 | + |
| 13 | +import plotly.express as px |
| 14 | + |
| 15 | + |
| 16 | +def show(matrix): |
| 17 | + if len(matrix.shape) == 1: |
| 18 | + matrix = matrix.unsqueeze(0) |
| 19 | + px.imshow(matrix.detach().cpu()).show() |
| 20 | + |
| 21 | + |
| 22 | +device = "cuda" if torch.cuda.is_available() else "cpu" |
| 23 | +torch.set_default_device(device) |
| 24 | +runtime_model_1, model = train_or_load_model(ABCAB8_1H, force="load") |
| 25 | +model.to(device) |
| 26 | + |
| 27 | +W_pos = model.W_pos |
| 28 | +W_E = model.W_E |
| 29 | +n_ctx = W_pos.shape[0] |
| 30 | +d_voc = W_E.shape[0] |
| 31 | +d_model = W_E.shape[1] |
| 32 | + |
| 33 | + |
| 34 | +# %% |
| 35 | +attn_scale_0 = model.blocks[0].attn.attn_scale |
| 36 | +attn_scale_1 = model.blocks[1].attn.attn_scale |
| 37 | +W_pos = model.W_pos |
| 38 | +W_E = model.W_E |
| 39 | +W_K_1 = model.W_K[1, 0] |
| 40 | +W_U = model.W_U |
| 41 | +W_V_1 = model.W_V[1, 0] |
| 42 | +W_K_0 = model.W_K[0, 0] |
| 43 | +W_V_0 = model.W_V[0, 0] |
| 44 | +W_O_0 = model.W_O[0, 0] |
| 45 | +W_Q_1 = model.W_Q[1, 0] |
| 46 | +W_Q_0 = model.W_Q[0, 0] |
| 47 | +W_O_1 = model.W_O[1, 0] |
| 48 | +W_Q_0 = model.W_Q[0, 0] |
| 49 | +o = W_O_0 |
| 50 | +v = W_V_0 |
| 51 | +q_1 = W_Q_1 |
| 52 | +k_1 = W_K_1 |
| 53 | +v_1 = W_V_1 |
| 54 | +o_1 = W_O_1 |
| 55 | +# %% |
| 56 | + |
| 57 | + |
| 58 | +EQKP = (W_E @ W_Q_0 @ W_K_0.T @ W_pos.T) / (attn_scale_0) |
| 59 | +PQKP = (W_pos @ W_Q_0 @ W_K_0.T @ W_pos.T) / (attn_scale_0) |
| 60 | +PQKE = (W_pos @ W_Q_0 @ W_K_0.T @ W_E.T) / (attn_scale_0) |
| 61 | +EQKE = (W_E @ W_Q_0 @ W_K_0.T @ W_E.T) / (attn_scale_0) |
| 62 | + |
| 63 | + |
| 64 | +# %% |
| 65 | + |
| 66 | +pos_pattern_pres = [] |
| 67 | +for index in range(1, 9): |
| 68 | + pos_pattern_pres.append( |
| 69 | + torch.softmax(PQKP[index - 1, :index] + EQKP[:, :index], dim=1) |
| 70 | + ) |
| 71 | + |
| 72 | +other_parts = torch.exp(PQKE[-index] + EQKE) |
| 73 | + |
| 74 | + |
| 75 | +# %% |
| 76 | +pvo = torch.zeros(8, 64) |
| 77 | +for index in range(1, 9): |
| 78 | + pvo[index - 1] = W_pos[index - 1] + ( |
| 79 | + (W_pos[:index] @ v @ o) * (pos_pattern_pres[index - 1].mean(dim=0)).unsqueeze(1) |
| 80 | + ).sum(dim=0) |
| 81 | + |
| 82 | + |
| 83 | +# %% |
| 84 | +pvoqkpvo = (pvo @ q_1 @ k_1.T @ pvo.T) / (attn_scale_1) |
| 85 | +eqkpvo = (W_E @ q_1 @ k_1.T @ pvo.T) / (attn_scale_1) |
| 86 | +evoqkpvo = (W_E @ v @ o @ q_1 @ k_1.T @ pvo.T) / (attn_scale_1) |
| 87 | +# %% |
| 88 | +index = 6 |
| 89 | +pvo_pattern = torch.softmax( |
| 90 | + eqkpvo[:, :index] + evoqkpvo[:, :index].mean() + pvoqkpvo[index - 1, :index], dim=1 |
| 91 | +) |
| 92 | +show(pvo_pattern) |
| 93 | +# %% |
| 94 | +pvoqke = (pvo @ q_1 @ k_1.T @ W_E.T) / (attn_scale_1) |
| 95 | +eqke = (W_E @ q_1 @ k_1.T @ W_E.T) / (attn_scale_1) |
| 96 | +evoqke = (W_E @ v @ o @ q_1 @ k_1.T @ W_E.T) / (attn_scale_1) |
| 97 | +pvoqkevo = (W_pos @ v @ o @ q_1 @ k_1.T @ (W_E @ v @ o).T) / (attn_scale_1) |
| 98 | +evoqkevo = (W_E @ v @ o @ q_1 @ k_1.T @ (W_E @ v @ o).T) / (attn_scale_1) |
| 99 | +# %% |
| 100 | +# e in itself |
| 101 | +show(pvoqkevo) |
| 102 | +show(evoqkevo) |
| 103 | +show(eqkevo) |
| 104 | +show(pvoqke) |
| 105 | +show(eqke) # a -> b |
| 106 | +# a -> a |
| 107 | +show(evoqke) # c -> a |
| 108 | +# c - > a |
| 109 | +# %% |
| 110 | +pvoqkevo = (pvo @ q_1 @ k_1.T @ (W_E @ v @ o).T) / (attn_scale_1) |
| 111 | +eqkevo = (W_E @ q_1 @ k_1.T @ (W_E @ v @ o).T) / (attn_scale_1) |
| 112 | +evoqkevo = (W_E @ v @ o @ q_1 @ k_1.T @ (W_E @ v @ o).T) / (attn_scale_1) |
| 113 | +show(torch.exp(evoqkevo)) |
| 114 | +show(eqkevo) |
| 115 | +show(torch.exp(pvoqkevo[1:-1])) |
| 116 | +# %% |
0 commit comments