@@ -120,40 +120,40 @@ def _get_location_from_best(obj):
120
120
# (or center) of the axes box.
121
121
# 1. Key points of the legend
122
122
lower_left_legend = x0_legend
123
- lower_right_legend = np .array ([x1_legend [0 ], x0_legend [1 ]], dtype = np .float_ )
124
- upper_left_legend = np .array ([x0_legend [0 ], x1_legend [1 ]], dtype = np .float_ )
123
+ lower_right_legend = np .array ([x1_legend [0 ], x0_legend [1 ]], dtype = np .float64 )
124
+ upper_left_legend = np .array ([x0_legend [0 ], x1_legend [1 ]], dtype = np .float64 )
125
125
upper_right_legend = x1_legend
126
126
center_legend = x0_legend + dimension_legend / 2.0
127
127
center_left_legend = np .array (
128
- [x0_legend [0 ], x0_legend [1 ] + dimension_legend [1 ] / 2.0 ], dtype = np .float_
128
+ [x0_legend [0 ], x0_legend [1 ] + dimension_legend [1 ] / 2.0 ], dtype = np .float64
129
129
)
130
130
center_right_legend = np .array (
131
- [x1_legend [0 ], x0_legend [1 ] + dimension_legend [1 ] / 2.0 ], dtype = np .float_
131
+ [x1_legend [0 ], x0_legend [1 ] + dimension_legend [1 ] / 2.0 ], dtype = np .float64
132
132
)
133
133
lower_center_legend = np .array (
134
- [x0_legend [0 ] + dimension_legend [0 ] / 2.0 , x0_legend [1 ]], dtype = np .float_
134
+ [x0_legend [0 ] + dimension_legend [0 ] / 2.0 , x0_legend [1 ]], dtype = np .float64
135
135
)
136
136
upper_center_legend = np .array (
137
- [x0_legend [0 ] + dimension_legend [0 ] / 2.0 , x1_legend [1 ]], dtype = np .float_
137
+ [x0_legend [0 ] + dimension_legend [0 ] / 2.0 , x1_legend [1 ]], dtype = np .float64
138
138
)
139
139
140
140
# 2. Key points of the axes
141
141
lower_left_axes = x0_axes
142
- lower_right_axes = np .array ([x1_axes [0 ], x0_axes [1 ]], dtype = np .float_ )
143
- upper_left_axes = np .array ([x0_axes [0 ], x1_axes [1 ]], dtype = np .float_ )
142
+ lower_right_axes = np .array ([x1_axes [0 ], x0_axes [1 ]], dtype = np .float64 )
143
+ upper_left_axes = np .array ([x0_axes [0 ], x1_axes [1 ]], dtype = np .float64 )
144
144
upper_right_axes = x1_axes
145
145
center_axes = x0_axes + dimension_axes / 2.0
146
146
center_left_axes = np .array (
147
- [x0_axes [0 ], x0_axes [1 ] + dimension_axes [1 ] / 2.0 ], dtype = np .float_
147
+ [x0_axes [0 ], x0_axes [1 ] + dimension_axes [1 ] / 2.0 ], dtype = np .float64
148
148
)
149
149
center_right_axes = np .array (
150
- [x1_axes [0 ], x0_axes [1 ] + dimension_axes [1 ] / 2.0 ], dtype = np .float_
150
+ [x1_axes [0 ], x0_axes [1 ] + dimension_axes [1 ] / 2.0 ], dtype = np .float64
151
151
)
152
152
lower_center_axes = np .array (
153
- [x0_axes [0 ] + dimension_axes [0 ] / 2.0 , x0_axes [1 ]], dtype = np .float_
153
+ [x0_axes [0 ] + dimension_axes [0 ] / 2.0 , x0_axes [1 ]], dtype = np .float64
154
154
)
155
155
upper_center_axes = np .array (
156
- [x0_axes [0 ] + dimension_axes [0 ] / 2.0 , x1_axes [1 ]], dtype = np .float_
156
+ [x0_axes [0 ] + dimension_axes [0 ] / 2.0 , x1_axes [1 ]], dtype = np .float64
157
157
)
158
158
159
159
# 3. Compute the distances between comparable points.
0 commit comments