11# ----------------- Training Setting-------------- #
22SCENE_DIR=" data/tandt"
33# eval all 9 scenes for benchmarking
4- SCENE_LIST=" train truck " # truck
4+ SCENE_LIST=" train " # truck
55# SCENE_LIST="garden bicycle stump bonsai counter kitchen room treehill flowers"
66
77# # 0.36M GSs
@@ -41,15 +41,15 @@ run_single_scene() {
4141 echo " Running $SCENE on GPU: $GPU_ID "
4242
4343 # train without eval
44- CUDA_VISIBLE_DEVICES=$GPU_ID python simple_trainer.py mcmc --eval_steps -1 --disable_viewer --data_factor 1 \
45- --strategy.cap-max $CAP_MAX \
46- --data_dir $SCENE_DIR /$SCENE / \
47- --result_dir $RESULT_DIR /$SCENE / \
48- --compression_sim \
49- --entropy_model_opt --entropy_model_type gaussian_model \
50- --rd_lambda $RD_LAMBDA \
51- --shN_ada_mask_opt \
52- --compression entropy_coding
44+ # CUDA_VISIBLE_DEVICES=$GPU_ID python simple_trainer.py mcmc --eval_steps -1 --disable_viewer --data_factor 1 \
45+ # --strategy.cap-max $CAP_MAX \
46+ # --data_dir $SCENE_DIR/$SCENE/ \
47+ # --result_dir $RESULT_DIR/$SCENE/ \
48+ # --compression_sim \
49+ # --entropy_model_opt --entropy_model_type gaussian_model \
50+ # --rd_lambda $RD_LAMBDA \
51+ # --shN_ada_mask_opt \
52+ # --compression entropy_coding
5353
5454
5555 # eval: use vgg for lpips to align with other benchmarks
@@ -67,31 +67,31 @@ run_single_scene() {
6767
6868
6969# ----------------- Experiment Loop -------------- #
70- # GPU_LIST=(5 7 )
71- # GPU_COUNT=${#GPU_LIST[@]}
70+ GPU_LIST=(3 4 )
71+ GPU_COUNT=${# GPU_LIST[@]}
7272
73- # SCENE_IDX=-1
73+ SCENE_IDX=-1
7474
75- # for SCENE in $SCENE_LIST;
76- # do
77- # SCENE_IDX=$((SCENE_IDX + 1))
78- # {
79- # run_single_scene ${GPU_LIST[$SCENE_IDX]} $SCENE
80- # } &
75+ for SCENE in $SCENE_LIST ;
76+ do
77+ SCENE_IDX=$(( SCENE_IDX + 1 ))
78+ {
79+ run_single_scene ${GPU_LIST[$SCENE_IDX]} $SCENE
80+ } &
8181
82- # done
82+ done
8383
8484# ----------------- Experiment Loop -------------- #
8585
8686# Wait for finishing the jobs across all scenes
87- wait
88- echo " All scenes finished."
89-
90- # Zip the compressed files and summarize the stats
91- if command -v zip & > /dev/null
92- then
93- echo " Zipping results"
94- python benchmarks/compression/summarize_stats.py --results_dir $RESULT_DIR --scenes $SCENE_LIST
95- else
96- echo " zip command not found, skipping zipping"
97- fi
87+ # wait
88+ # echo "All scenes finished."
89+
90+ # # Zip the compressed files and summarize the stats
91+ # if command -v zip &> /dev/null
92+ # then
93+ # echo "Zipping results"
94+ # python benchmarks/compression/summarize_stats.py --results_dir $RESULT_DIR --scenes $SCENE_LIST
95+ # else
96+ # echo "zip command not found, skipping zipping"
97+ # fi
0 commit comments