Skip to content

Commit c366fed

Browse files
committed
misc
1 parent cfd6e9f commit c366fed

File tree

2 files changed

+42
-42
lines changed

2 files changed

+42
-42
lines changed

examples/benchmarks/compression/final_exp/mcmc_tt_sim.sh

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# ----------------- Training Setting-------------- #
22
SCENE_DIR="data/tandt"
33
# eval all 9 scenes for benchmarking
4-
SCENE_LIST="truck" # train truck
4+
SCENE_LIST="train truck" # train truck
55
# SCENE_LIST="garden bicycle stump bonsai counter kitchen room treehill flowers"
66

77
# # 0.36M GSs
@@ -41,15 +41,15 @@ run_single_scene() {
4141
echo "Running $SCENE on GPU: $GPU_ID"
4242

4343
# train without eval
44-
# CUDA_VISIBLE_DEVICES=$GPU_ID python simple_trainer.py mcmc --eval_steps -1 --disable_viewer --data_factor 1 \
45-
# --strategy.cap-max $CAP_MAX \
46-
# --data_dir $SCENE_DIR/$SCENE/ \
47-
# --result_dir $RESULT_DIR/$SCENE/ \
48-
# --compression_sim \
49-
# --entropy_model_opt \
50-
# --rd_lambda $RD_LAMBDA \
51-
# --shN_ada_mask_opt \
52-
# --compression png
44+
CUDA_VISIBLE_DEVICES=$GPU_ID python simple_trainer.py mcmc --eval_steps -1 --disable_viewer --data_factor 1 \
45+
--strategy.cap-max $CAP_MAX \
46+
--data_dir $SCENE_DIR/$SCENE/ \
47+
--result_dir $RESULT_DIR/$SCENE/ \
48+
--compression_sim \
49+
--entropy_model_opt \
50+
--rd_lambda $RD_LAMBDA \
51+
--shN_ada_mask_opt \
52+
--compression png
5353

5454

5555
# eval: use vgg for lpips to align with other benchmarks
@@ -67,7 +67,7 @@ run_single_scene() {
6767

6868

6969
# ----------------- Experiment Loop -------------- #
70-
GPU_LIST=(5 6)
70+
GPU_LIST=(6 7)
7171
GPU_COUNT=${#GPU_LIST[@]}
7272

7373
SCENE_IDX=-1

examples/benchmarks/compression/final_exp/mcmc_tt_sim_hash_grid.sh

Lines changed: 31 additions & 31 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# ----------------- Training Setting-------------- #
22
SCENE_DIR="data/tandt"
33
# eval all 9 scenes for benchmarking
4-
SCENE_LIST="train truck" # truck
4+
SCENE_LIST="train " # truck
55
# SCENE_LIST="garden bicycle stump bonsai counter kitchen room treehill flowers"
66

77
# # 0.36M GSs
@@ -41,15 +41,15 @@ run_single_scene() {
4141
echo "Running $SCENE on GPU: $GPU_ID"
4242

4343
# train without eval
44-
CUDA_VISIBLE_DEVICES=$GPU_ID python simple_trainer.py mcmc --eval_steps -1 --disable_viewer --data_factor 1 \
45-
--strategy.cap-max $CAP_MAX \
46-
--data_dir $SCENE_DIR/$SCENE/ \
47-
--result_dir $RESULT_DIR/$SCENE/ \
48-
--compression_sim \
49-
--entropy_model_opt --entropy_model_type gaussian_model \
50-
--rd_lambda $RD_LAMBDA \
51-
--shN_ada_mask_opt \
52-
--compression entropy_coding
44+
# CUDA_VISIBLE_DEVICES=$GPU_ID python simple_trainer.py mcmc --eval_steps -1 --disable_viewer --data_factor 1 \
45+
# --strategy.cap-max $CAP_MAX \
46+
# --data_dir $SCENE_DIR/$SCENE/ \
47+
# --result_dir $RESULT_DIR/$SCENE/ \
48+
# --compression_sim \
49+
# --entropy_model_opt --entropy_model_type gaussian_model \
50+
# --rd_lambda $RD_LAMBDA \
51+
# --shN_ada_mask_opt \
52+
# --compression entropy_coding
5353

5454

5555
# eval: use vgg for lpips to align with other benchmarks
@@ -67,31 +67,31 @@ run_single_scene() {
6767

6868

6969
# ----------------- Experiment Loop -------------- #
70-
# GPU_LIST=(5 7)
71-
# GPU_COUNT=${#GPU_LIST[@]}
70+
GPU_LIST=(3 4)
71+
GPU_COUNT=${#GPU_LIST[@]}
7272

73-
# SCENE_IDX=-1
73+
SCENE_IDX=-1
7474

75-
# for SCENE in $SCENE_LIST;
76-
# do
77-
# SCENE_IDX=$((SCENE_IDX + 1))
78-
# {
79-
# run_single_scene ${GPU_LIST[$SCENE_IDX]} $SCENE
80-
# } &
75+
for SCENE in $SCENE_LIST;
76+
do
77+
SCENE_IDX=$((SCENE_IDX + 1))
78+
{
79+
run_single_scene ${GPU_LIST[$SCENE_IDX]} $SCENE
80+
} &
8181

82-
# done
82+
done
8383

8484
# ----------------- Experiment Loop -------------- #
8585

8686
# Wait for finishing the jobs across all scenes
87-
wait
88-
echo "All scenes finished."
89-
90-
# Zip the compressed files and summarize the stats
91-
if command -v zip &> /dev/null
92-
then
93-
echo "Zipping results"
94-
python benchmarks/compression/summarize_stats.py --results_dir $RESULT_DIR --scenes $SCENE_LIST
95-
else
96-
echo "zip command not found, skipping zipping"
97-
fi
87+
# wait
88+
# echo "All scenes finished."
89+
90+
# # Zip the compressed files and summarize the stats
91+
# if command -v zip &> /dev/null
92+
# then
93+
# echo "Zipping results"
94+
# python benchmarks/compression/summarize_stats.py --results_dir $RESULT_DIR --scenes $SCENE_LIST
95+
# else
96+
# echo "zip command not found, skipping zipping"
97+
# fi

0 commit comments

Comments
 (0)