|
| 1 | +<h1 align='center'>Implement - K - Queues - In an - Single - Array</h1> |
| 2 | + |
| 3 | +## Problem Statement |
| 4 | + |
| 5 | +**Problem URL :** [Impelement k Queues in an Single Array](https://www.geeksforgeeks.org/efficiently-implement-k-queues-single-array/) |
| 6 | + |
| 7 | +You are given **`k`** queues and an array of size **`n`**. The challenge is to implement these **`k`** queues efficiently using a **single array** of size **`n`**. The program should support standard queue operations, namely: |
| 8 | +1. **Enqueue (push an element into a specific queue)**. |
| 9 | +2. **Dequeue (remove an element from a specific queue)**. |
| 10 | + |
| 11 | +The goal is to: |
| 12 | +- **Efficiently manage multiple queues** using only one array. |
| 13 | +- Ensure that the space in the array is reused optimally when items are dequeued. |
| 14 | + |
| 15 | +This is also called the **k-queue problem** where we need to use a single array to store elements of multiple queues. |
| 16 | + |
| 17 | +### Beginner's Approach: |
| 18 | + |
| 19 | +A beginner DSA student can break down the problem as follows: |
| 20 | +1. **Understanding the problem**: Instead of creating separate arrays for each queue, you need to use a single array to manage multiple queues. This is space-efficient. |
| 21 | +2. **Front and Rear management**: Each queue has its own `front` and `rear` to keep track of where elements are added and removed. |
| 22 | +3. **Array space reuse**: When an element is dequeued, the space it used can be recycled and made available for future enqueue operations. |
| 23 | + |
| 24 | +### Key Ideas: |
| 25 | +- We maintain an array to store the actual elements. |
| 26 | +- We use an additional `front` and `rear` array for each queue. |
| 27 | +- A `next` array helps link the different spaces in the single array, similar to how nodes are linked in a linked list. |
| 28 | +- A `freeSpot` variable keeps track of the next available free space in the array. |
| 29 | + |
| 30 | +### Approach: |
| 31 | +1. **Initialization**: Start with an array that stores the queue elements, a `front[]` and `rear[]` array to keep track of each queue's front and rear. Also, maintain a `next[]` array to point to the next free space or the next element in the queue. |
| 32 | +2. **Enqueue**: |
| 33 | + - Check if there's a free space using `freeSpot`. |
| 34 | + - Insert the element at the free space and update the necessary pointers (update `rear[]`, `front[]`, and `next[]` arrays). |
| 35 | +3. **Dequeue**: |
| 36 | + - Check if the queue is empty by checking `front[]`. |
| 37 | + - Remove the front element from the queue, update the pointers, and recycle the space by updating `freeSpot`. |
| 38 | +## Problem Solution |
| 39 | +```cpp |
| 40 | +#include <iostream> |
| 41 | +using namespace std; |
| 42 | + |
| 43 | +class kQueue{ |
| 44 | + public: |
| 45 | + int *arr; |
| 46 | + int k; |
| 47 | + int n; |
| 48 | + int *front; |
| 49 | + int *rear; |
| 50 | + int freeSpot; |
| 51 | + int *next; |
| 52 | + |
| 53 | + kQueue(int n, int k){ |
| 54 | + this -> n = n; |
| 55 | + this -> k = k; |
| 56 | + arr = new int[n]; |
| 57 | + front = new int[k]; |
| 58 | + rear = new int[k]; |
| 59 | + next = new int[n]; |
| 60 | + freeSpot = 0; |
| 61 | + |
| 62 | + for(int i = 0; i < k; i++){ |
| 63 | + front[i] = -1; |
| 64 | + rear [i] = -1; |
| 65 | + } |
| 66 | + |
| 67 | + for(int i = 0; i < n-1; i++){ |
| 68 | + next[i] = i + 1; |
| 69 | + } |
| 70 | + next[n-1] = -1; |
| 71 | + } |
| 72 | + |
| 73 | + void enQueue(int data, int qn){ |
| 74 | + // overflow |
| 75 | + if(freeSpot == -1){ |
| 76 | + cout << "No empty space is available" << endl; |
| 77 | + return; |
| 78 | + } |
| 79 | + |
| 80 | + // find first free index; |
| 81 | + int index = freeSpot; |
| 82 | + |
| 83 | + // update freeSpot; |
| 84 | + freeSpot = next[index]; |
| 85 | + |
| 86 | + // check wheather first element |
| 87 | + if(front[qn-1] == -1){ |
| 88 | + front[qn-1] = index; |
| 89 | + }else{ |
| 90 | + // link new element to the prev element |
| 91 | + next[rear[qn-1]] = index; |
| 92 | + } |
| 93 | + |
| 94 | + // update next; |
| 95 | + next[index] = -1; |
| 96 | + |
| 97 | + // update rear; |
| 98 | + rear[qn-1] = index; |
| 99 | + |
| 100 | + // push element; |
| 101 | + arr[index] = data; |
| 102 | + |
| 103 | + } |
| 104 | + |
| 105 | + int deQueue(int qn){ |
| 106 | + // underflow |
| 107 | + if(front[qn-1] == -1){ |
| 108 | + cout << "Queue underflow" <<endl; |
| 109 | + return -1; |
| 110 | + } |
| 111 | + |
| 112 | + // find index to pop |
| 113 | + int index = front[qn-1]; |
| 114 | + |
| 115 | + // update front pointer |
| 116 | + front[qn-1] = next[index]; |
| 117 | + |
| 118 | + // next freeSpot |
| 119 | + next[index] = freeSpot; |
| 120 | + freeSpot = index; |
| 121 | + |
| 122 | + return arr[index]; |
| 123 | + } |
| 124 | +}; |
| 125 | + |
| 126 | +int main() { |
| 127 | + kQueue q(10, 3); |
| 128 | + |
| 129 | + q.enQueue(10, 1); |
| 130 | + q.enQueue(15, 1); |
| 131 | + q.enQueue(20, 2); |
| 132 | + q.enQueue(25, 1); |
| 133 | + q.enQueue(30, 2); |
| 134 | + q.enQueue(35, 3); |
| 135 | + |
| 136 | + cout << "Element poped from q1 : " << q.deQueue(1) <<endl; |
| 137 | + cout << "Element poped from q1 : " << q.deQueue(1) <<endl; |
| 138 | + cout << "Element poped from q2 : " << q.deQueue(2) <<endl; |
| 139 | + cout << "Element poped from q3 : " << q.deQueue(3) <<endl; |
| 140 | + return 0; |
| 141 | +} |
| 142 | +``` |
| 143 | +
|
| 144 | +## Problem Solution Explanation |
| 145 | +Here's a detailed explanation of the source code, walking through it step by step: |
| 146 | +
|
| 147 | +### 1. **Class and Member Variables** |
| 148 | +
|
| 149 | +```cpp |
| 150 | +class kQueue{ |
| 151 | + public: |
| 152 | + int *arr; // Array to store elements for all the queues |
| 153 | + int k; // Number of queues |
| 154 | + int n; // Total size of the array (capacity) |
| 155 | + int *front; // Array to store front indices of all queues |
| 156 | + int *rear; // Array to store rear indices of all queues |
| 157 | + int freeSpot; // Index of the next free spot in the array |
| 158 | + int *next; // Array to manage the next free index or the next element in a queue |
| 159 | +``` |
| 160 | + |
| 161 | +This declares the class `kQueue` and the member variables. Here’s what each variable does: |
| 162 | +- **`arr[]`**: Stores the actual elements for all the queues. |
| 163 | +- **`k`**: The number of queues. |
| 164 | +- **`n`**: The total size of the array. |
| 165 | +- **`front[]`**: Keeps track of the front (starting) index of each queue. |
| 166 | +- **`rear[]`**: Keeps track of the rear (last) index of each queue. |
| 167 | +- **`freeSpot`**: Index of the next available free spot in the array. |
| 168 | +- **`next[]`**: This helps manage both free spots and the linked structure of queues. |
| 169 | + |
| 170 | +### 2. **Constructor** |
| 171 | + |
| 172 | +```cpp |
| 173 | +kQueue(int n, int k){ |
| 174 | + this -> n = n; |
| 175 | + this -> k = k; |
| 176 | + arr = new int[n]; |
| 177 | + front = new int[k]; |
| 178 | + rear = new int[k]; |
| 179 | + next = new int[n]; |
| 180 | + freeSpot = 0; |
| 181 | + |
| 182 | + for(int i = 0; i < k; i++){ |
| 183 | + front[i] = -1; |
| 184 | + rear[i] = -1; |
| 185 | + } |
| 186 | + |
| 187 | + for(int i = 0; i < n-1; i++){ |
| 188 | + next[i] = i + 1; |
| 189 | + } |
| 190 | + next[n-1] = -1; |
| 191 | +} |
| 192 | +``` |
| 193 | + |
| 194 | +Here’s what happens: |
| 195 | +- **`this -> n = n` and `this -> k = k`**: Initialize the total size (`n`) and number of queues (`k`). |
| 196 | +- **`arr = new int[n]`**: Allocate memory for the array that holds all elements. |
| 197 | +- **`front[]` and `rear[]`**: Arrays to hold front and rear indices for each queue. Initially, each queue is empty, so both are set to `-1`. |
| 198 | +- **`next[]`**: Helps track the next free spot and link elements within queues. Initially, all slots are free and linked to the next one in sequence (`next[i] = i + 1`). For example, `next[0] = 1`, `next[1] = 2`, and so on. The last index (`next[n-1] = -1`) indicates that there are no more free spots. |
| 199 | + |
| 200 | +**Example Setup**: |
| 201 | +Let’s say `n = 10` (array size) and `k = 3` (three queues): |
| 202 | +- Initially: |
| 203 | + - `arr[] = { _, _, _, _, _, _, _, _, _, _ }` (empty array) |
| 204 | + - `front[] = { -1, -1, -1 }` (no front indices yet) |
| 205 | + - `rear[] = { -1, -1, -1 }` (no rear indices yet) |
| 206 | + - `next[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, -1 }` (linked free spots) |
| 207 | + - `freeSpot = 0` (next free spot is index 0) |
| 208 | + |
| 209 | +### 3. **Enqueue Operation** |
| 210 | + |
| 211 | +```cpp |
| 212 | +void enQueue(int data, int qn){ |
| 213 | + if(freeSpot == -1){ |
| 214 | + cout << "No empty space is available" << endl; |
| 215 | + return; |
| 216 | + } |
| 217 | + |
| 218 | + int index = freeSpot; // Get the free index |
| 219 | + freeSpot = next[index]; // Update freeSpot to the next available spot |
| 220 | + |
| 221 | + if(front[qn-1] == -1){ // If the queue is empty |
| 222 | + front[qn-1] = index; // Set front of the queue to this index |
| 223 | + } else { |
| 224 | + next[rear[qn-1]] = index; // Link the new element to the previous rear |
| 225 | + } |
| 226 | + |
| 227 | + next[index] = -1; // Set next of the new element to -1 (end of queue) |
| 228 | + rear[qn-1] = index; // Update rear to the new index |
| 229 | + arr[index] = data; // Add the element to the array |
| 230 | +} |
| 231 | +``` |
| 232 | +
|
| 233 | +- **Check for overflow**: If `freeSpot == -1`, there are no free spots left. |
| 234 | +- **Allocate a free spot**: `index = freeSpot` gives us the current free index. `freeSpot = next[index]` updates the free spot to the next available one. |
| 235 | +- **Add the element**: |
| 236 | + - If the queue is empty (`front[qn-1] == -1`), set the front of the queue to this index. |
| 237 | + - Otherwise, link the new element to the existing queue by updating `next[rear[qn-1]] = index`. |
| 238 | +- **Set `next[index] = -1`** to mark the new element as the last element of the queue. |
| 239 | +- **Update `rear[qn-1] = index`** to point to the newly added element. |
| 240 | +- **Store the data**: Finally, `arr[index] = data` stores the new element in the array. |
| 241 | +
|
| 242 | +**Example**: |
| 243 | +Let’s enqueue `10` into Queue 1 (`qn = 1`): |
| 244 | +- **Before enqueue**: |
| 245 | + - `freeSpot = 0` |
| 246 | + - `front[] = { -1, -1, -1 }` |
| 247 | + - `rear[] = { -1, -1, -1 }` |
| 248 | +- **Steps**: |
| 249 | + - Free spot is 0 (`index = 0`). |
| 250 | + - Set `freeSpot = next[0] = 1` (next free spot is 1). |
| 251 | + - Queue 1 is empty, so `front[0] = 0`. |
| 252 | + - Set `next[0] = -1` and `rear[0] = 0`. |
| 253 | + - Store `arr[0] = 10`. |
| 254 | +
|
| 255 | +The array looks like this after enqueuing: |
| 256 | +- `arr[] = { 10, _, _, _, _, _, _, _, _, _ }` |
| 257 | +- `front[] = { 0, -1, -1 }` |
| 258 | +- `rear[] = { 0, -1, -1 }` |
| 259 | +- `freeSpot = 1` |
| 260 | +
|
| 261 | +### 4. **Dequeue Operation** |
| 262 | +
|
| 263 | +```cpp |
| 264 | +int deQueue(int qn){ |
| 265 | + if(front[qn-1] == -1){ |
| 266 | + cout << "Queue underflow" << endl; |
| 267 | + return -1; |
| 268 | + } |
| 269 | + |
| 270 | + int index = front[qn-1]; // Get the front index |
| 271 | + front[qn-1] = next[index]; // Update the front to the next element |
| 272 | + |
| 273 | + next[index] = freeSpot; // Add the current index to the free list |
| 274 | + freeSpot = index; // Update freeSpot to this newly freed index |
| 275 | + |
| 276 | + return arr[index]; // Return the dequeued element |
| 277 | +} |
| 278 | +``` |
| 279 | + |
| 280 | +- **Check for underflow**: If `front[qn-1] == -1`, the queue is empty. |
| 281 | +- **Dequeue the front element**: Save the front index (`index = front[qn-1]`), then update the front to the next element (`front[qn-1] = next[index]`). |
| 282 | +- **Free the current spot**: Add the dequeued spot to the list of free spots by setting `next[index] = freeSpot`, and update `freeSpot = index`. |
| 283 | +- **Return the dequeued element**: Finally, return the element stored in `arr[index]`. |
| 284 | + |
| 285 | +**Example**: |
| 286 | +Let’s dequeue an element from Queue 1: |
| 287 | +- **Before dequeue**: |
| 288 | + - `front[0] = 0` (points to index 0 where `10` is stored). |
| 289 | + - `rear[0] = 0`. |
| 290 | +- **Steps**: |
| 291 | + - Dequeue `arr[0] = 10`. |
| 292 | + - Set `front[0] = next[0] = -1` (Queue 1 becomes empty). |
| 293 | + - Set `next[0] = freeSpot = 1` (index 0 is now free). |
| 294 | + - Update `freeSpot = 0`. |
| 295 | + |
| 296 | +The array after dequeue: |
| 297 | +- `arr[] = { 10, _, _, _, _, _, _, _, _, _ }` (element is still in the array but not part of the queue) |
| 298 | +- `front[] = { -1, -1, -1 }` |
| 299 | +- `rear[] = { -1, -1, -1 }` |
| 300 | +- `freeSpot = 0` |
| 301 | + |
| 302 | +### 5. **Main Function Example** |
| 303 | + |
| 304 | +```cpp |
| 305 | +int main() { |
| 306 | + kQueue q(10, 3); |
| 307 | + |
| 308 | + q.enQueue(10, 1); // Enqueue 10 to Queue 1 |
| 309 | + q.enQueue(15, 1); // Enqueue 15 to Queue 1 |
| 310 | + q.enQueue(20, 2); // Enqueue 20 to Queue 2 |
| 311 | + q.enQueue(25, 1); // Enqueue 25 to Queue 1 |
| 312 | + q.enQueue(30, 2); // Enqueue 30 to Queue 2 |
| 313 | + q.enQueue(35, 3); // Enqueue 35 to Queue 3 |
| 314 | + |
| 315 | + cout << "Element poped from |
| 316 | + |
| 317 | + queue 1 is " << q.deQueue(1) << endl; |
| 318 | + cout << "Element poped from queue 2 is " << q.deQueue(2) << endl; |
| 319 | + cout << "Element poped from queue 3 is " << q.deQueue(3) << endl; |
| 320 | +} |
| 321 | +``` |
| 322 | + |
| 323 | +- Enqueues 10, 15, and 25 into Queue 1, 20 and 30 into Queue 2, and 35 into Queue 3. |
| 324 | +- Dequeues elements from Queue 1, Queue 2, and Queue 3 and prints them. |
| 325 | + |
| 326 | +### Time and Space Complexities of the `kQueue` Implementation: |
| 327 | + |
| 328 | +#### 1. **Space Complexity:** |
| 329 | + |
| 330 | +Let’s break down the space usage: |
| 331 | + |
| 332 | +- **`arr[]`**: The array stores the elements of all the queues, and its size is `n` (the total capacity of all queues combined). |
| 333 | +- **`front[]` and `rear[]`**: Two arrays of size `k` (the number of queues) to store the front and rear indices of each queue. |
| 334 | +- **`next[]`**: An array of size `n` to manage free spots and links between elements within the queues. |
| 335 | +- **Miscellaneous**: A few integer variables (`n`, `k`, `freeSpot`), which take constant space. |
| 336 | + |
| 337 | +**Space complexity** is therefore: |
| 338 | +\[ |
| 339 | +\text{Space Complexity} = O(n) + O(k) + O(n) = O(n + k) |
| 340 | +\] |
| 341 | +Where: |
| 342 | +- `O(n)` is for storing the elements in `arr[]` and `next[]`. |
| 343 | +- `O(k)` is for the `front[]` and `rear[]` arrays, which store the indices for each of the `k` queues. |
| 344 | + |
| 345 | +#### 2. **Time Complexity:** |
| 346 | + |
| 347 | +The two primary operations, `enQueue` and `deQueue`, are both constant time operations due to the efficient usage of the `next[]` array and index tracking. |
| 348 | + |
| 349 | +##### **a. `enQueue(int data, int qn)`** |
| 350 | + |
| 351 | +1. **Checking for available space** (`if(freeSpot == -1)`): This is a constant time check, `O(1)`. |
| 352 | +2. **Allocating space**: Fetching a free spot and updating the `freeSpot` pointer is constant time (`O(1)`). |
| 353 | +3. **Updating the `front[]` and `rear[]` arrays**: Setting front or rear indices and updating the `next[]` array takes constant time, `O(1)`. |
| 354 | +4. **Storing the data in `arr[]`**: Simply involves assigning a value to the array, which is constant time, `O(1)`. |
| 355 | + |
| 356 | +Thus, the overall **time complexity of the `enQueue` operation** is: |
| 357 | +\[ |
| 358 | +O(1) |
| 359 | +\] |
| 360 | + |
| 361 | +##### **b. `deQueue(int qn)`** |
| 362 | + |
| 363 | +1. **Checking for underflow** (`if(front[qn-1] == -1)`): This is a constant time check, `O(1)`. |
| 364 | +2. **Fetching the front element**: Retrieving the element and updating the `front[]` pointer takes constant time, `O(1)`. |
| 365 | +3. **Releasing the space**: Adding the index back to the list of free spots (by updating `freeSpot` and `next[]`) is done in constant time, `O(1)`. |
| 366 | + |
| 367 | +Thus, the overall **time complexity of the `deQueue` operation** is: |
| 368 | +\[ |
| 369 | +O(1) |
| 370 | +\] |
| 371 | + |
| 372 | +### Summary of Complexities: |
| 373 | + |
| 374 | +- **Time Complexity**: |
| 375 | + - **`enQueue`**: `O(1)` |
| 376 | + - **`deQueue`**: `O(1)` |
| 377 | + |
| 378 | +- **Space Complexity**: `O(n + k)`, where `n` is the total capacity of the array for all queues, and `k` is the number of queues. |
| 379 | + |
| 380 | +This implementation is highly efficient in terms of time complexity, as both enqueue and dequeue operations take constant time (`O(1)`), making it ideal for real-time applications where multiple queues need to be managed in a memory-efficient manner. |
| 381 | + |
| 382 | + |
| 383 | + |
0 commit comments