|
| 1 | +class Solution { |
| 2 | +public: |
| 3 | + // Recursive function with memoization to find the longest palindromic subsequence |
| 4 | + // Parameters: |
| 5 | + // - str: the original string |
| 6 | + // - revStr: the reversed string |
| 7 | + // - i: current index in the original string |
| 8 | + // - j: current index in the reversed string |
| 9 | + // - dp: 2D vector for memoization to store intermediate results |
| 10 | + int solve(string str, string revStr, int i, int j, vector<vector<int>>& dp) { |
| 11 | + // Base case: if either index exceeds the string length, return 0 |
| 12 | + if (i >= str.length() || j >= revStr.length()) |
| 13 | + return 0; |
| 14 | + |
| 15 | + // If the result for this state is already computed, return it |
| 16 | + if (dp[i][j] != -1) |
| 17 | + return dp[i][j]; |
| 18 | + |
| 19 | + // If characters at the current indices match, move to the next indices in both strings |
| 20 | + if (str[i] == revStr[j]) |
| 21 | + return dp[i][j] = 1 + solve(str, revStr, i + 1, j + 1, dp); |
| 22 | + else { |
| 23 | + // Otherwise, take the maximum result by advancing one index at a time in either string |
| 24 | + int ans = max(solve(str, revStr, i + 1, j, dp), solve(str, revStr, i, j + 1, dp)); |
| 25 | + return dp[i][j] = ans; // Store the result in the dp table |
| 26 | + } |
| 27 | + } |
| 28 | + |
| 29 | + // Main function to calculate the longest palindromic subsequence |
| 30 | + int longestPalindromeSubseq(string str) { |
| 31 | + // Create a reversed copy of the original string |
| 32 | + string revStr = str; |
| 33 | + reverse(revStr.begin(), revStr.end()); |
| 34 | + |
| 35 | + // Initialize a 2D dp table with -1 for memoization |
| 36 | + vector<vector<int>> dp(str.length() + 1, vector<int>(revStr.length() + 1, -1)); |
| 37 | + |
| 38 | + // Start the recursive function with initial indices 0 and 0 |
| 39 | + return solve(str, revStr, 0, 0, dp); |
| 40 | + } |
| 41 | +}; |
0 commit comments