|
| 1 | +class Solution { |
| 2 | +public: |
| 3 | + // Function to calculate the minimum money required to guarantee a win |
| 4 | + // for the range [1, n]. We use dynamic programming to solve the problem. |
| 5 | + int solve(int n) { |
| 6 | + // Create a 2D DP table (n+2 x n+2) initialized to 0. |
| 7 | + // dp[start][end] will store the minimum money required to guarantee a win in the range [start, end]. |
| 8 | + vector<vector<int>> dp(n + 2, vector<int>(n + 2, 0)); |
| 9 | + |
| 10 | + // Start filling the DP table from the bottom-up approach. |
| 11 | + // We iterate from n down to 1 for the 'start' index. |
| 12 | + for (int start = n; start >= 1; start--) { |
| 13 | + // For each 'start', we iterate from 'start' to 'n' for the 'end' index. |
| 14 | + for (int end = start; end <= n; end++) { |
| 15 | + // If start == end, it means there's only one number in the range, |
| 16 | + // so no money is needed (continue to the next iteration). |
| 17 | + if (start == end) continue; |
| 18 | + else { |
| 19 | + // Initialize 'maxi' to a very large value to store the minimum money. |
| 20 | + int maxi = INT_MAX; |
| 21 | + |
| 22 | + // Try every number 'i' in the range [start, end] as a possible guess. |
| 23 | + for (int i = start; i <= end; i++) { |
| 24 | + // Calculate the cost of choosing 'i': |
| 25 | + // - 'i' is the cost of guessing 'i'. |
| 26 | + // - We then look at the two subranges: [start, i-1] and [i+1, end]. |
| 27 | + // The worst-case scenario is the maximum of the two subranges, |
| 28 | + // and we want to minimize the maximum cost. |
| 29 | + maxi = min(maxi, i + max(dp[start][i - 1], dp[i + 1][end])); |
| 30 | + } |
| 31 | + |
| 32 | + // Store the result in the DP table for the range [start, end]. |
| 33 | + dp[start][end] = maxi; |
| 34 | + } |
| 35 | + } |
| 36 | + } |
| 37 | + |
| 38 | + // The result for the full range [1, n] is stored in dp[1][n]. |
| 39 | + return dp[1][n]; |
| 40 | + } |
| 41 | + |
| 42 | + // Wrapper function to start the process with the range [1, n]. |
| 43 | + int getMoneyAmount(int n) { |
| 44 | + // Call the solve function with the full range [1, n]. |
| 45 | + return solve(n); |
| 46 | + } |
| 47 | +}; |
0 commit comments