|
| 1 | +class Solution { |
| 2 | +public: |
| 3 | + // Helper function to recursively find the length of the longest common subsequence with memoization |
| 4 | + int solve(string &text1, string &text2, int i, int j, vector<vector<int>>& dp) { |
| 5 | + // Base case: if either string is exhausted, no subsequence is possible |
| 6 | + if (i >= text1.length() || j >= text2.length()) return 0; |
| 7 | + |
| 8 | + // Check if the result for this state has already been computed |
| 9 | + if (dp[i][j] != -1) return dp[i][j]; |
| 10 | + |
| 11 | + int ans = 0; // Initialize the answer for the current state |
| 12 | + |
| 13 | + // Case 1: Characters match, include them in the subsequence |
| 14 | + if (text1[i] == text2[j]) |
| 15 | + return dp[i][j] = 1 + solve(text1, text2, i + 1, j + 1, dp); |
| 16 | + else { |
| 17 | + // Case 2: Characters don't match, explore two possibilities: |
| 18 | + // a) Skip the current character of text1 |
| 19 | + // b) Skip the current character of text2 |
| 20 | + // Take the maximum of these two possibilities |
| 21 | + ans = max(solve(text1, text2, i + 1, j, dp), solve(text1, text2, i, j + 1, dp)); |
| 22 | + } |
| 23 | + |
| 24 | + // Store the computed result in the memoization table |
| 25 | + return dp[i][j] = ans; |
| 26 | + } |
| 27 | + |
| 28 | + // Main function to compute the longest common subsequence |
| 29 | + int longestCommonSubsequence(string text1, string text2) { |
| 30 | + // Create a 2D vector for memoization initialized with -1 |
| 31 | + // dp[i][j] stores the result of solve for indices i and j |
| 32 | + vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, -1)); |
| 33 | + |
| 34 | + // Start the recursive computation from the beginning of both strings |
| 35 | + return solve(text1, text2, 0, 0, dp); |
| 36 | + } |
| 37 | +}; |
0 commit comments