|
| 1 | +// User function Template for C++ |
| 2 | +class Solution { |
| 3 | + public: |
| 4 | + // Recursive function to find the size of the largest square ending at (i, j) |
| 5 | + int solve(vector<vector<int>>& mat, int i, int j, int &maxi) { |
| 6 | + // Base condition: If out of bounds, return 0 |
| 7 | + if (i >= mat.size() || j >= mat[0].size()) return 0; |
| 8 | + |
| 9 | + // Recursive calls to calculate the size of squares in three directions: |
| 10 | + int right = solve(mat, i, j + 1, maxi); // Square ending to the right |
| 11 | + int diagnol = solve(mat, i + 1, j + 1, maxi); // Square ending diagonally |
| 12 | + int down = solve(mat, i + 1, j, maxi); // Square ending below |
| 13 | + |
| 14 | + // If the current cell contains 1 |
| 15 | + if (mat[i][j] == 1) { |
| 16 | + // Calculate the size of the square ending at (i, j) |
| 17 | + int ans = 1 + min(right, min(diagnol, down)); |
| 18 | + |
| 19 | + // Update the maximum square size |
| 20 | + maxi = max(maxi, ans); |
| 21 | + return ans; // Return the size of the square at (i, j) |
| 22 | + } |
| 23 | + |
| 24 | + // If the current cell contains 0, it cannot form a square |
| 25 | + return 0; |
| 26 | + } |
| 27 | + |
| 28 | + // Main function to find the largest square submatrix with all 1s |
| 29 | + int maxSquare(vector<vector<int>>& mat) { |
| 30 | + int maxi = 0; // Variable to store the maximum square size |
| 31 | + solve(mat, 0, 0, maxi); // Start solving from the top-left corner |
| 32 | + return maxi; // Return the maximum square size |
| 33 | + } |
| 34 | +}; |
0 commit comments