|
| 1 | +// Solution class for 0/1 Knapsack problem |
| 2 | +class Solution { |
| 3 | + public: |
| 4 | + // Recursive function to solve the 0/1 Knapsack problem |
| 5 | + int solve(int capacity, vector<int> &value, vector<int> &weight, int index){ |
| 6 | + // Base case: if we've considered all items, return the value of the last item |
| 7 | + // if it fits in the knapsack, otherwise return 0 |
| 8 | + if(index == 0){ |
| 9 | + if(weight[0] <= capacity) return value[0]; |
| 10 | + else return 0; |
| 11 | + } |
| 12 | + |
| 13 | + // Initialize variables to store the maximum value with and without the current item |
| 14 | + int include = 0; |
| 15 | + |
| 16 | + // If the current item fits in the knapsack, consider including it |
| 17 | + if(weight[index] <= capacity) { |
| 18 | + // Recursively call the function with the remaining capacity and items |
| 19 | + include = solve(capacity - weight[index], value, weight, index-1) + value[index]; |
| 20 | + } |
| 21 | + |
| 22 | + // Consider excluding the current item |
| 23 | + int exclude = solve(capacity, value, weight, index-1) + 0; |
| 24 | + |
| 25 | + // Return the maximum value between including and excluding the current item |
| 26 | + return max(include, exclude); |
| 27 | + } |
| 28 | + |
| 29 | + // Function to initialize and call the recursive solve function |
| 30 | + int knapSack(int capacity, vector<int> &val, vector<int> &wt) { |
| 31 | + |
| 32 | + // Get the number of items |
| 33 | + int n = wt.size(); |
| 34 | + |
| 35 | + // Call the recursive solve function with the initial capacity and all items |
| 36 | + return solve(capacity, val, wt, n-1); |
| 37 | + } |
| 38 | +}; |
0 commit comments