|
| 1 | +<h1 align='center'>Find - Median - From - Data - Stream</h1> |
| 2 | + |
| 3 | +## Problem Statement |
| 4 | + |
| 5 | +**Problem URL :** [Find Median From Data Stream](https://leetcode.com/problems/find-median-from-data-stream/) |
| 6 | + |
| 7 | + |
| 8 | + |
| 9 | + |
| 10 | +## Problem Explanation |
| 11 | +The task is to continuously find the median of a stream of integers. |
| 12 | + |
| 13 | +- **Median Definition**: The median of a sorted dataset is: |
| 14 | + - The middle value if the dataset has an odd number of elements. |
| 15 | + - The average of the two middle values if the dataset has an even number of elements. |
| 16 | +- **Constraints**: |
| 17 | + - We cannot store all the numbers and sort them after every insertion, as it would be inefficient for large data streams. |
| 18 | + |
| 19 | +#### **Example** |
| 20 | +1. Numbers: `[5]` |
| 21 | + Median: `5` (only one number). |
| 22 | +2. Numbers: `[5, 10]` |
| 23 | + Median: `(5 + 10) / 2 = 7.5`. |
| 24 | +3. Numbers: `[5, 10, 3]` |
| 25 | + Sorted: `[3, 5, 10]` |
| 26 | + Median: `5`. |
| 27 | + |
| 28 | + |
| 29 | + |
| 30 | +#### **Approach** |
| 31 | +We use two heaps: |
| 32 | +1. **Max-Heap** (`maxHeap`): Stores the smaller half of the numbers. The maximum number of this half is the top of the heap. |
| 33 | +2. **Min-Heap** (`minHeap`): Stores the larger half of the numbers. The minimum number of this half is the top of the heap. |
| 34 | + |
| 35 | +**Steps**: |
| 36 | +1. Insert the number into one of the heaps: |
| 37 | + - If the number is smaller than or equal to the top of `maxHeap`, add it to `maxHeap`. |
| 38 | + - Otherwise, add it to `minHeap`. |
| 39 | +2. Balance the heaps: |
| 40 | + - Ensure that the difference in sizes between `maxHeap` and `minHeap` is at most 1. |
| 41 | + - If `maxHeap` has too many elements, move the top of `maxHeap` to `minHeap`. |
| 42 | + - If `minHeap` has too many elements, move the top of `minHeap` to `maxHeap`. |
| 43 | +3. Find the median: |
| 44 | + - If the heaps are of equal size, the median is the average of the tops of both heaps. |
| 45 | + - If one heap has more elements, the median is the top of that heap. |
| 46 | + |
| 47 | +## Problem Solution |
| 48 | +```cpp |
| 49 | +class MedianFinder { |
| 50 | +public: |
| 51 | + priority_queue<int> maxHeap; |
| 52 | + priority_queue<int, vector<int>, greater<int>> minHeap; |
| 53 | + MedianFinder() { |
| 54 | + |
| 55 | + } |
| 56 | + |
| 57 | + void addNum(int num) { |
| 58 | + if(maxHeap.size() == 0 || num <= maxHeap.top()) maxHeap.push(num); |
| 59 | + else minHeap.push(num); |
| 60 | + |
| 61 | + if(maxHeap.size() > minHeap.size() + 1){ |
| 62 | + minHeap.push(maxHeap.top()); |
| 63 | + maxHeap.pop(); |
| 64 | + }else if (minHeap.size() > maxHeap.size()){ |
| 65 | + maxHeap.push(minHeap.top()); |
| 66 | + minHeap.pop(); |
| 67 | + } |
| 68 | + } |
| 69 | + |
| 70 | + double findMedian() { |
| 71 | + if(minHeap.size() == maxHeap.size()) return (maxHeap.top() + minHeap.top()) / 2.0; |
| 72 | + else return maxHeap.top(); |
| 73 | + } |
| 74 | +}; |
| 75 | + |
| 76 | +/** |
| 77 | + * Your MedianFinder object will be instantiated and called as such: |
| 78 | + * MedianFinder* obj = new MedianFinder(); |
| 79 | + * obj->addNum(num); |
| 80 | + * double param_2 = obj->findMedian(); |
| 81 | + */ |
| 82 | +``` |
| 83 | + |
| 84 | +## Problem Solution Explanation |
| 85 | + |
| 86 | +```cpp |
| 87 | +class MedianFinder { |
| 88 | +public: |
| 89 | + priority_queue<int> maxHeap; // Max-heap for the smaller half |
| 90 | + priority_queue<int, vector<int>, greater<int>> minHeap; // Min-heap for the larger half |
| 91 | +``` |
| 92 | +
|
| 93 | +- **Explanation**: |
| 94 | + - `maxHeap` keeps the smaller numbers, and the largest of these numbers is the top. |
| 95 | + - `minHeap` keeps the larger numbers, and the smallest of these numbers is the top. |
| 96 | +
|
| 97 | +
|
| 98 | +
|
| 99 | +```cpp |
| 100 | + MedianFinder() { } |
| 101 | +``` |
| 102 | + |
| 103 | +- **Explanation**: |
| 104 | + - Constructor to initialize the `MedianFinder` object. |
| 105 | + - No specific setup is required here. |
| 106 | + |
| 107 | + |
| 108 | + |
| 109 | +```cpp |
| 110 | + void addNum(int num) { |
| 111 | + if(maxHeap.size() == 0 || num <= maxHeap.top()) |
| 112 | + maxHeap.push(num); |
| 113 | + else |
| 114 | + minHeap.push(num); |
| 115 | +``` |
| 116 | +
|
| 117 | +- **Explanation**: |
| 118 | + - If `maxHeap` is empty or `num` is less than or equal to the largest number in `maxHeap`, add it to `maxHeap`. |
| 119 | + - Otherwise, add it to `minHeap`. |
| 120 | +
|
| 121 | +- **Example**: |
| 122 | + Adding `10` when both heaps are empty: |
| 123 | + - `maxHeap = [10]`, `minHeap = []`. |
| 124 | +
|
| 125 | + Adding `15`: |
| 126 | + - `maxHeap.top() = 10`. Since `15 > 10`, add it to `minHeap`. |
| 127 | + - Result: `maxHeap = [10]`, `minHeap = [15]`. |
| 128 | +
|
| 129 | +
|
| 130 | +
|
| 131 | +```cpp |
| 132 | + if(maxHeap.size() > minHeap.size() + 1){ |
| 133 | + minHeap.push(maxHeap.top()); |
| 134 | + maxHeap.pop(); |
| 135 | + }else if (minHeap.size() > maxHeap.size()){ |
| 136 | + maxHeap.push(minHeap.top()); |
| 137 | + minHeap.pop(); |
| 138 | + } |
| 139 | + } |
| 140 | +``` |
| 141 | + |
| 142 | +- **Explanation**: |
| 143 | + - If `maxHeap` has more than one extra element, move its top to `minHeap`. |
| 144 | + - If `minHeap` has more elements, move its top to `maxHeap`. |
| 145 | + |
| 146 | +- **Example**: |
| 147 | + Adding `5` to `maxHeap = [10]`, `minHeap = [15]`: |
| 148 | + - `maxHeap = [10, 5]`, `minHeap = [15]` (unbalanced). |
| 149 | + - Move `10` to `minHeap`. |
| 150 | + - Result: `maxHeap = [5]`, `minHeap = [10, 15]`. |
| 151 | + |
| 152 | + |
| 153 | + |
| 154 | +```cpp |
| 155 | + double findMedian() { |
| 156 | + if(minHeap.size() == maxHeap.size()) |
| 157 | + return (maxHeap.top() + minHeap.top()) / 2.0; |
| 158 | + else |
| 159 | + return maxHeap.top(); |
| 160 | + } |
| 161 | +}; |
| 162 | +``` |
| 163 | + |
| 164 | +- **Explanation**: |
| 165 | + - If the sizes of `maxHeap` and `minHeap` are equal, return the average of their tops. |
| 166 | + - Otherwise, return the top of `maxHeap` (it will always have more elements if sizes are unequal). |
| 167 | + |
| 168 | + |
| 169 | + |
| 170 | +### **Step 3: Examples and Expected Outputs** |
| 171 | + |
| 172 | +#### Example Input: `[5, 15, 1, 3]` |
| 173 | +1. Add `5`: |
| 174 | + - `maxHeap = [5]`, `minHeap = []`. |
| 175 | + - Median: `5`. |
| 176 | + |
| 177 | +2. Add `15`: |
| 178 | + - `maxHeap = [5]`, `minHeap = [15]`. |
| 179 | + - Median: `(5 + 15) / 2 = 10`. |
| 180 | + |
| 181 | +3. Add `1`: |
| 182 | + - `maxHeap = [5, 1]`, `minHeap = [15]` (unbalanced). |
| 183 | + - Move `5` to `minHeap`. |
| 184 | + - `maxHeap = [1]`, `minHeap = [5, 15]`. |
| 185 | + - Median: `5`. |
| 186 | + |
| 187 | +4. Add `3`: |
| 188 | + - `maxHeap = [3, 1]`, `minHeap = [5, 15]` (balanced). |
| 189 | + - Median: `(3 + 5) / 2 = 4`. |
| 190 | + |
| 191 | + |
| 192 | + |
| 193 | +### **Step 4: Time and Space Complexity** |
| 194 | + |
| 195 | +#### **Time Complexity** |
| 196 | +1. **Insertion**: |
| 197 | + - Inserting into a heap takes \(O(\log n)\). |
| 198 | + - Balancing takes \(O(\log n)\). |
| 199 | + - Total per insertion: \(O(\log n)\). |
| 200 | +2. **Finding Median**: |
| 201 | + - Fetching the top of the heaps takes \(O(1)\). |
| 202 | + - Total: \(O(1)\). |
| 203 | + |
| 204 | +For \(n\) numbers: |
| 205 | +- **Total Time Complexity**: \(O(n \log n)\). |
| 206 | + |
| 207 | + |
| 208 | + |
| 209 | +#### **Space Complexity** |
| 210 | +- Both heaps together store all elements: \(O(n)\). |
| 211 | +- **Total Space Complexity**: \(O(n)\). |
| 212 | + |
| 213 | + |
| 214 | + |
| 215 | +### **Step 5: Additional Recommendations** |
| 216 | +1. **Practice Similar Problems**: |
| 217 | + - "Sliding Window Median." |
| 218 | + - "Kth Largest Element in a Stream." |
| 219 | +2. **Edge Cases**: |
| 220 | + - Single number: `[5]`. |
| 221 | + - All numbers are the same: `[10, 10, 10]`. |
| 222 | + - Stream of negative numbers. |
| 223 | + |
| 224 | +3. **Debugging Tip**: |
| 225 | + - Visualize the heaps after each insertion to understand their balance. |
| 226 | + |
| 227 | +This detailed explanation ensures a beginner-friendly understanding of the problem and solution. 😊 |
0 commit comments