Skip to content

Commit 3896799

Browse files
authored
Create 03 - Bottom-Up | DP | Approach.cpp
1 parent 41ff2f2 commit 3896799

File tree

1 file changed

+50
-0
lines changed

1 file changed

+50
-0
lines changed
Lines changed: 50 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,50 @@
1+
class Solution {
2+
public:
3+
// Function to solve the problem using dynamic programming
4+
int solve(vector<int>& obstacles) {
5+
int n = obstacles.size() - 1; // Get the last position in the obstacles array
6+
// Initialize the dp table with large values (1e9), where dp[lane][pos] represents the minimum jumps required
7+
// to reach the end from position 'pos' in 'lane'.
8+
vector<vector<int>> dp(4, vector<int>(n + 1, 1e9));
9+
10+
// Base case: at the last position (n), no more jumps are needed, hence 0 jumps for all lanes
11+
dp[0][n] = 0;
12+
dp[1][n] = 0;
13+
dp[2][n] = 0;
14+
dp[3][n] = 0;
15+
16+
// Iterate from the second-last position to the start of the array
17+
for(int pos = n - 1; pos >= 0; pos--) {
18+
// Try all 3 lanes (1, 2, 3) for each position
19+
for(int lane = 1; lane <= 3; lane++) {
20+
21+
// If the next position is not blocked by the current lane, no jump is needed
22+
if(obstacles[pos + 1] != lane) {
23+
dp[lane][pos] = dp[lane][pos + 1]; // Carry over the result from the next position
24+
} else {
25+
// If the next position is blocked, we need to jump to a different lane
26+
int ans = 1e9; // Initialize the answer to a large value (to minimize later)
27+
28+
// Try all 3 possible lanes (1, 2, 3) to find the best jump option
29+
for(int i = 1; i <= 3; i++) {
30+
// If the current lane is not the lane we're trying to jump to, and the lane is not blocked
31+
if(lane != i && obstacles[pos] != i) {
32+
// Add 1 for the jump and update the answer with the minimum jumps required
33+
ans = min(ans, 1 + dp[i][pos + 1]);
34+
}
35+
}
36+
dp[lane][pos] = ans; // Store the result for this position and lane
37+
}
38+
}
39+
}
40+
41+
// Return the minimum jumps required starting from position 0 with lane 2.
42+
// We also consider the case where we might need one jump to lane 1 or lane 3.
43+
return min({dp[2][0], dp[1][0] + 1, dp[3][0] + 1});
44+
}
45+
46+
// Main function to return the minimum number of side jumps
47+
int minSideJumps(vector<int>& obstacles) {
48+
return solve(obstacles); // Call the solve function to get the result
49+
}
50+
};

0 commit comments

Comments
 (0)