|
| 1 | +<h1 align='center'>Path - Sum</h1> |
| 2 | + |
| 3 | +## Problem Statement |
| 4 | + |
| 5 | +**Problem URL :** [Path Sum](https://leetcode.com/problems/path-sum/) |
| 6 | + |
| 7 | + |
| 8 | + |
| 9 | + |
| 10 | + |
| 11 | +## Problem Explanation |
| 12 | +The problem requires us to determine if a given binary tree has a root-to-leaf path such that the sum of the values of the nodes along the path equals a specified target sum. A root-to-leaf path is defined as a path starting from the root node and ending at any leaf node (a node with no children). |
| 13 | + |
| 14 | +#### Examples: |
| 15 | + |
| 16 | +1. **Example 1**: |
| 17 | + - **Input**: |
| 18 | + - **Tree**: |
| 19 | + ``` |
| 20 | + 5 |
| 21 | + / \ |
| 22 | + 4 8 |
| 23 | + / / \ |
| 24 | + 11 13 4 |
| 25 | + / \ \ |
| 26 | + 7 2 1 |
| 27 | + ``` |
| 28 | + - **Target Sum**: `22` |
| 29 | + - **Output**: `true` (The path 5 → 4 → 11 → 2 has a sum of `22`.) |
| 30 | +
|
| 31 | +2. **Example 2**: |
| 32 | + - **Input**: |
| 33 | + - **Tree**: |
| 34 | + ``` |
| 35 | + 1 |
| 36 | + / \ |
| 37 | + 2 3 |
| 38 | + ``` |
| 39 | + - **Target Sum**: `5` |
| 40 | + - **Output**: `false` (There is no path that adds up to `5`.) |
| 41 | +
|
| 42 | +3. **Example 3**: |
| 43 | + - **Input**: |
| 44 | + - **Tree**: |
| 45 | + ``` |
| 46 | + 1 |
| 47 | + / |
| 48 | + 2 |
| 49 | + ``` |
| 50 | + - **Target Sum**: `1` |
| 51 | + - **Output**: `false` (The only path is 1 → 2, which sums to `3`, not `1`.) |
| 52 | +
|
| 53 | +### Step 2: Approach to Solve the Problem |
| 54 | +
|
| 55 | +To solve the problem, we can use a recursive depth-first search (DFS) approach: |
| 56 | +
|
| 57 | +1. **Base Case**: |
| 58 | + - If the current node is `NULL`, return `false` (no path exists). |
| 59 | +
|
| 60 | +2. **Update the Target**: |
| 61 | + - Subtract the value of the current node from the `targetSum`. |
| 62 | +
|
| 63 | +3. **Leaf Node Check**: |
| 64 | + - If the current node is a leaf (both left and right children are `NULL`), check if the updated `targetSum` is `0`. If yes, return `true` (indicating a valid path). |
| 65 | +
|
| 66 | +4. **Recursive Calls**: |
| 67 | + - Recursively check the left and right subtrees with the updated `targetSum`. If either subtree returns `true`, then a valid path exists. |
| 68 | +
|
| 69 | +## Problem Solution |
| 70 | +```cpp |
| 71 | +/** |
| 72 | + * Definition for a binary tree node. |
| 73 | + * struct TreeNode { |
| 74 | + * int val; |
| 75 | + * TreeNode *left; |
| 76 | + * TreeNode *right; |
| 77 | + * TreeNode() : val(0), left(nullptr), right(nullptr) {} |
| 78 | + * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} |
| 79 | + * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} |
| 80 | + * }; |
| 81 | + */ |
| 82 | +class Solution { |
| 83 | +public: |
| 84 | + bool hasPathSum(TreeNode* root, int targetSum) { |
| 85 | + if(root == NULL) return false; |
| 86 | +
|
| 87 | + targetSum -= root -> val; |
| 88 | +
|
| 89 | + if(root -> left == NULL && root -> right == NULL){ |
| 90 | + return targetSum == 0; |
| 91 | + } |
| 92 | +
|
| 93 | + return hasPathSum(root -> left, targetSum) || hasPathSum(root -> right, targetSum); |
| 94 | + } |
| 95 | +}; |
| 96 | +``` |
| 97 | + |
| 98 | +## Problem Solution Explanation |
| 99 | +Here’s the code with detailed explanations: |
| 100 | + |
| 101 | +```cpp |
| 102 | +class Solution { |
| 103 | +public: |
| 104 | + bool hasPathSum(TreeNode* root, int targetSum) { |
| 105 | +``` |
| 106 | +- **Explanation**: The `hasPathSum` function begins with a `TreeNode* root` representing the root of the binary tree and an `int targetSum` representing the target sum we want to check. |
| 107 | +
|
| 108 | +```cpp |
| 109 | + if(root == NULL) return false; |
| 110 | +``` |
| 111 | +- **Explanation**: If the current node (`root`) is `NULL`, there is no path to check, so return `false`. |
| 112 | + |
| 113 | +```cpp |
| 114 | + targetSum -= root -> val; |
| 115 | +``` |
| 116 | +- **Explanation**: Subtract the value of the current node from `targetSum`. This updates the remaining sum we need to find along the path. |
| 117 | + |
| 118 | +```cpp |
| 119 | + if(root -> left == NULL && root -> right == NULL){ |
| 120 | + return targetSum == 0; |
| 121 | + } |
| 122 | +``` |
| 123 | +- **Explanation**: Check if the current node is a leaf node (both children are `NULL`). If it is, return `true` if the `targetSum` has been reduced to `0`, indicating that the path sum equals the original target sum. |
| 124 | +
|
| 125 | +```cpp |
| 126 | + return hasPathSum(root -> left, targetSum) || hasPathSum(root -> right, targetSum); |
| 127 | + } |
| 128 | +}; |
| 129 | +``` |
| 130 | +- **Explanation**: Recursively call `hasPathSum` on the left and right children of the current node. Use the logical OR (`||`) to return `true` if either subtree contains a path that sums to the required target. |
| 131 | + |
| 132 | +### Step-by-Step Example Walkthrough |
| 133 | + |
| 134 | +Consider the following tree and target sum: |
| 135 | + |
| 136 | +- **Input Tree**: |
| 137 | +``` |
| 138 | + 5 |
| 139 | + / \ |
| 140 | + 4 8 |
| 141 | + / / \ |
| 142 | +11 13 4 |
| 143 | +/ \ \ |
| 144 | +7 2 1 |
| 145 | +``` |
| 146 | +- **Target Sum**: `22` |
| 147 | + |
| 148 | +1. **Start at Root (Node 5)**: |
| 149 | + - Call `hasPathSum(5, 22)`. |
| 150 | + - Update `targetSum` to `22 - 5 = 17`. |
| 151 | + |
| 152 | +2. **Left Subtree (Node 4)**: |
| 153 | + - Call `hasPathSum(4, 17)`. |
| 154 | + - Update `targetSum` to `17 - 4 = 13`. |
| 155 | + |
| 156 | +3. **Left Subtree of 4 (Node 11)**: |
| 157 | + - Call `hasPathSum(11, 13)`. |
| 158 | + - Update `targetSum` to `13 - 11 = 2`. |
| 159 | + |
| 160 | +4. **Left Subtree of 11 (Node 7)**: |
| 161 | + - Call `hasPathSum(7, 2)`. |
| 162 | + - Both children are `NULL`. Return `false` (2 != 0). |
| 163 | + |
| 164 | +5. **Right Subtree of 11 (Node 2)**: |
| 165 | + - Call `hasPathSum(2, 2)`. |
| 166 | + - Both children are `NULL`. Return `true` (2 == 0). |
| 167 | + |
| 168 | +6. **Back to Node 4**: Since we found a valid path in the left subtree, we return `true`. |
| 169 | + |
| 170 | +7. **Check Right Subtree (Node 8)**: |
| 171 | + - Call `hasPathSum(8, 17)`. |
| 172 | + - Update `targetSum` to `17 - 8 = 9`. |
| 173 | + |
| 174 | +8. **Left Subtree of 8 (Node 13)**: |
| 175 | + - Call `hasPathSum(13, 9)`. |
| 176 | + - Both children are `NULL`. Return `false` (9 != 0). |
| 177 | + |
| 178 | +9. **Right Subtree of 8 (Node 4)**: |
| 179 | + - Call `hasPathSum(4, 9)`. |
| 180 | + - Update `targetSum` to `9 - 4 = 5`. |
| 181 | + |
| 182 | +10. **Right Subtree of 4 (Node 1)**: |
| 183 | + - Call `hasPathSum(1, 5)`. |
| 184 | + - Both children are `NULL`. Return `false` (5 != 0). |
| 185 | + |
| 186 | +The final output is `true`, as we found the path `5 → 4 → 11 → 2`. |
| 187 | + |
| 188 | +### Step 4: Time and Space Complexity |
| 189 | + |
| 190 | +1. **Time Complexity**: **O(N)**, where `N` is the number of nodes in the binary tree. |
| 191 | + - Each node is visited once to check for the path sum. |
| 192 | + |
| 193 | +2. **Space Complexity**: **O(H)**, where `H` is the height of the tree. |
| 194 | + - The space complexity is primarily due to the recursive call stack. In the worst case (skewed tree), it could be `O(N)`, while for balanced trees, it would be `O(log N)`. |
| 195 | + |
| 196 | +Overall, this approach efficiently checks if there exists a path in the binary tree whose sum equals the specified target sum using recursion. |
0 commit comments