|
| 1 | +class Solution { |
| 2 | +public: |
| 3 | + // Recursive function with memoization to check if a subset sum equals the target |
| 4 | + int solve(vector<int>& nums, int index, int n, int target, vector<vector<int>> &dp) { |
| 5 | + // Base case: If we've processed all elements and haven't reached the target, return 0 |
| 6 | + if(index >= n) return 0; |
| 7 | + |
| 8 | + // If the target becomes negative, return 0 (we can't have a negative sum) |
| 9 | + if(target < 0) return 0; |
| 10 | + |
| 11 | + // If the target becomes zero, it means we've found a subset whose sum equals the target |
| 12 | + if(target == 0) return 1; |
| 13 | + |
| 14 | + // Check if the result for this subproblem has already been computed |
| 15 | + if(dp[index][target] != -1) return dp[index][target]; |
| 16 | + |
| 17 | + // Option 1: Include the current element (nums[index]) in the subset and reduce the target |
| 18 | + int include = solve(nums, index + 1, n, target - nums[index], dp); |
| 19 | + |
| 20 | + // Option 2: Exclude the current element and try the next index with the same target |
| 21 | + int exclude = solve(nums, index + 1, n, target, dp); |
| 22 | + |
| 23 | + // Memoize the result for the current index and target |
| 24 | + return dp[index][target] = include or exclude; // Use logical OR to check if either option works |
| 25 | + } |
| 26 | + |
| 27 | + // Main function to check if we can partition the array into two subsets with equal sum |
| 28 | + bool canPartition(vector<int>& nums) { |
| 29 | + int n = nums.size(); |
| 30 | + int total = 0; |
| 31 | + |
| 32 | + // Calculate the total sum of the elements in the array |
| 33 | + for(auto & num : nums) total += num; |
| 34 | + |
| 35 | + // If the total sum is odd, return false because it can't be partitioned into two equal subsets |
| 36 | + if(total & 1) return 0; |
| 37 | + |
| 38 | + // Set the target as half of the total sum |
| 39 | + int target = total / 2; |
| 40 | + |
| 41 | + // Create a memoization table to store results for subproblems |
| 42 | + // dp[i][j] will store whether it's possible to form sum 'j' using the first 'i' elements |
| 43 | + vector<vector<int>> dp(n, vector<int>(target + 1, -1)); |
| 44 | + |
| 45 | + // Call the recursive function to check if a subset sum equal to 'target' exists |
| 46 | + return solve(nums, 0, n, target, dp); |
| 47 | + } |
| 48 | +}; |
0 commit comments