|
| 1 | +#include <iostream> |
| 2 | +#include <vector> |
| 3 | +using namespace std; |
| 4 | + |
| 5 | +// Definition for a Node in the Binary Tree |
| 6 | +class Node { |
| 7 | +public: |
| 8 | + int data; // Value of the node |
| 9 | + Node* left; // Left child |
| 10 | + Node* right; // Right child |
| 11 | + |
| 12 | + // Constructor to create a new node with a given value |
| 13 | + Node(int val) { |
| 14 | + this->data = val; |
| 15 | + this->left = NULL; // Initially, left child is NULL |
| 16 | + this->right = NULL; // Initially, right child is NULL |
| 17 | + } |
| 18 | +}; |
| 19 | + |
| 20 | +// Function to perform in-order traversal of the BST |
| 21 | +// This will store the values of the tree nodes in an array |
| 22 | +void inOrder(Node* root, vector<int> &nodes) { |
| 23 | + if (root == NULL) return; // Base case: if node is NULL, return |
| 24 | + |
| 25 | + inOrder(root->left, nodes); // Recur on the left child |
| 26 | + nodes.push_back(root->data); // Store the current node's data |
| 27 | + inOrder(root->right, nodes); // Recur on the right child |
| 28 | +} |
| 29 | + |
| 30 | +// Function to convert the BST to a Max Heap |
| 31 | +// It uses the in-order traversal values stored in 'nodes' and sets the tree |
| 32 | +// values in a way that satisfies the Max Heap property |
| 33 | +void inOrderToMaxHeap(Node* root, vector<int>& nodes, int &index) { |
| 34 | + if (root == NULL) return; // Base case: if node is NULL, return |
| 35 | + |
| 36 | + // Assign the current node's data from the largest remaining value |
| 37 | + root->data = nodes[index--]; // Decrement index after assigning to ensure we take the largest value first |
| 38 | + |
| 39 | + // Recur on the left and right subtrees |
| 40 | + inOrderToMaxHeap(root->left, nodes, index); |
| 41 | + inOrderToMaxHeap(root->right, nodes, index); |
| 42 | +} |
| 43 | + |
| 44 | +// Function to convert the entire BST to Max Heap |
| 45 | +void BST_to_MaxHeap(Node* root) { |
| 46 | + if (root == NULL) return; // Base case: if root is NULL, return |
| 47 | + |
| 48 | + vector<int> nodes; // Vector to store the node values in in-order |
| 49 | + inOrder(root, nodes); // Perform in-order traversal and store node values in 'nodes' |
| 50 | + |
| 51 | + int index = nodes.size() - 1; // Initialize the index to the last element (largest value) |
| 52 | + inOrderToMaxHeap(root, nodes, index); // Assign values from largest to smallest to the tree nodes |
| 53 | +} |
| 54 | + |
| 55 | +// Function to print the tree in preorder (root, left, right) to check the Max Heap property |
| 56 | +void print(Node* root) { |
| 57 | + if (root == NULL) return; // Base case: if node is NULL, return |
| 58 | + |
| 59 | + cout << root->data << " "; // Print the current node's data |
| 60 | + print(root->left); // Recursively print the left subtree |
| 61 | + print(root->right); // Recursively print the right subtree |
| 62 | +} |
| 63 | + |
| 64 | +int main() { |
| 65 | + // Constructing a simple BST |
| 66 | + Node* root = new Node(4); // Root node with value 4 |
| 67 | + root->left = new Node(2); // Left child of root with value 2 |
| 68 | + root->right = new Node(6); // Right child of root with value 6 |
| 69 | + root->left->left = new Node(1); // Left child of node 2 with value 1 |
| 70 | + root->left->right = new Node(3); // Right child of node 2 with value 3 |
| 71 | + root->right->left = new Node(5); // Left child of node 6 with value 5 |
| 72 | + root->right->right = new Node(7); // Right child of node 6 with value 7 |
| 73 | + |
| 74 | + // Convert BST to Max Heap |
| 75 | + BST_to_MaxHeap(root); |
| 76 | + |
| 77 | + // Print the tree in preorder to verify the Max Heap property |
| 78 | + cout << "Preorder of Max Heap: "; |
| 79 | + print(root); // Print the tree's preorder traversal (should satisfy Max Heap property) |
| 80 | + cout << endl; |
| 81 | + |
| 82 | + return 0; |
| 83 | +} |
0 commit comments