|
| 1 | +class Solution { |
| 2 | +public: |
| 3 | + // Iterative function to calculate the maximum profit using dynamic programming (bottom-up approach) |
| 4 | + // `prices`: vector of stock prices |
| 5 | + // `k`: maximum number of transactions allowed |
| 6 | + int solve(vector<int>& prices, int k) { |
| 7 | + int n = prices.size(); // Total number of days |
| 8 | + |
| 9 | + // Create a 3D DP table where: |
| 10 | + // dp[i][buy][limit]: Maximum profit achievable starting from day `i` with `buy` state and `limit` transactions left |
| 11 | + vector<vector<vector<int>>> dp(n + 1, vector<vector<int>>(2, vector<int>(k + 1, 0))); |
| 12 | + |
| 13 | + // Iterate backwards over days (from the last day to the first day) |
| 14 | + for (int index = n - 1; index >= 0; index--) { |
| 15 | + // Iterate over the buy/sell state (0 = sell, 1 = buy) |
| 16 | + for (int buy = 0; buy <= 1; buy++) { |
| 17 | + // Iterate over the transaction limits (from 1 to k) |
| 18 | + for (int limit = 1; limit <= k; limit++) { |
| 19 | + int profit = 0; // Variable to store the profit for the current state |
| 20 | + |
| 21 | + if (buy) { |
| 22 | + // If the current state allows buying, we have two options: |
| 23 | + // 1. Buy the stock at the current price, then move to the next day with `buy = 0`. |
| 24 | + // 2. Skip buying and move to the next day with `buy = 1`. |
| 25 | + int buyStock = -prices[index] + dp[index + 1][0][limit]; // Buying |
| 26 | + int notBuyStock = 0 + dp[index + 1][1][limit]; // Skipping |
| 27 | + profit = max(buyStock, notBuyStock); // Maximize profit |
| 28 | + } else { |
| 29 | + // If the current state allows selling, we have two options: |
| 30 | + // 1. Sell the stock at the current price, then move to the next day with `buy = 1` and decrement the transaction count. |
| 31 | + // 2. Skip selling and move to the next day with `buy = 0`. |
| 32 | + int sellStock = prices[index] + dp[index + 1][1][limit - 1]; // Selling |
| 33 | + int notSellStock = 0 + dp[index + 1][0][limit]; // Skipping |
| 34 | + profit = max(sellStock, notSellStock); // Maximize profit |
| 35 | + } |
| 36 | + |
| 37 | + // Store the result in the DP table |
| 38 | + dp[index][buy][limit] = profit; |
| 39 | + } |
| 40 | + } |
| 41 | + } |
| 42 | + |
| 43 | + // Return the maximum profit starting from day 0, with the ability to buy and `k` transactions available |
| 44 | + return dp[0][1][k]; |
| 45 | + } |
| 46 | + |
| 47 | + // Main function to calculate the maximum profit |
| 48 | + // `k`: maximum number of transactions allowed |
| 49 | + // `prices`: vector of stock prices |
| 50 | + int maxProfit(int k, vector<int>& prices) { |
| 51 | + int n = prices.size(); // Total number of days |
| 52 | + |
| 53 | + // Call the solve function to compute the result using dynamic programming |
| 54 | + return solve(prices, k); |
| 55 | + } |
| 56 | +}; |
0 commit comments