|
| 1 | +class Solution { |
| 2 | +public: |
| 3 | + // Function to recursively calculate the minimum cost to climb stairs starting from index `i` |
| 4 | + int solve(vector<int>& cost, int i, vector<int>& dp) { |
| 5 | + // Base case 1: If we are at the first step, the cost is simply the cost of step 0 |
| 6 | + if (i == 0) return cost[0]; |
| 7 | + // Base case 2: If we are at the second step, the cost is simply the cost of step 1 |
| 8 | + if (i == 1) return cost[1]; |
| 9 | + |
| 10 | + // Step 3: If the result for this step is already computed (memoized), return it |
| 11 | + if (dp[i] != -1) return dp[i]; |
| 12 | + |
| 13 | + // Step 2: Calculate the minimum cost for the current step |
| 14 | + // Add the cost at the current step to the minimum of: |
| 15 | + // - the cost of taking 1 step back |
| 16 | + // - the cost of taking 2 steps back |
| 17 | + dp[i] = cost[i] + min(solve(cost, i - 1, dp), solve(cost, i - 2, dp)); |
| 18 | + |
| 19 | + // Return the memoized result |
| 20 | + return dp[i]; |
| 21 | + } |
| 22 | + |
| 23 | + // Main function to calculate the minimum cost to climb to the top of the stairs |
| 24 | + int minCostClimbingStairs(vector<int>& cost) { |
| 25 | + // Step 1: Create a memoization array `dp` initialized with -1 |
| 26 | + // The size of `dp` is `cost.size() + 1` to handle the maximum index |
| 27 | + vector<int> dp(cost.size() + 1, -1); |
| 28 | + |
| 29 | + // Start from the last two possible steps to reach the top and return the minimum |
| 30 | + return min(solve(cost, cost.size() - 1, dp), solve(cost, cost.size() - 2, dp)); |
| 31 | + } |
| 32 | +}; |
0 commit comments