|
| 1 | +#include <iostream> |
| 2 | +#include <vector> |
| 3 | +#include <climits> |
| 4 | +#include <list> |
| 5 | +#include <stack> |
| 6 | +#include <unordered_map> |
| 7 | + |
| 8 | +using namespace std; |
| 9 | + |
| 10 | +// Class representing a graph |
| 11 | +class Graph { |
| 12 | +public: |
| 13 | + // Adjacency list to store the graph as source -> {destination, weight} |
| 14 | + unordered_map<int, list<pair<int, int>>> adjacencyList; |
| 15 | + |
| 16 | + // Method to add a directed edge with a weight |
| 17 | + void addEdge(int source, int destination, int weight) { |
| 18 | + pair<int, int> edge = make_pair(destination, weight); // Create a pair of destination and weight |
| 19 | + adjacencyList[source].push_back(edge); // Add the edge to the adjacency list |
| 20 | + } |
| 21 | + |
| 22 | + // Method to print the adjacency list for visualization |
| 23 | + void printAdjacencyList() { |
| 24 | + for (auto vertex : adjacencyList) { |
| 25 | + cout << vertex.first << " -> "; |
| 26 | + for (auto neighbour : vertex.second) { |
| 27 | + cout << "(" << neighbour.first << ", " << neighbour.second << "), "; |
| 28 | + } |
| 29 | + cout << endl; |
| 30 | + } |
| 31 | + } |
| 32 | + |
| 33 | + // Helper method for topological sorting (DFS-based) |
| 34 | + void topologicalSort(int node, vector<int>& visited, stack<int>& sortedNodes) { |
| 35 | + visited[node] = true; // Mark the current node as visited |
| 36 | + |
| 37 | + // Recursively visit all unvisited neighbors |
| 38 | + for (auto neighbour : adjacencyList[node]) { |
| 39 | + if (!visited[neighbour.first]) { |
| 40 | + topologicalSort(neighbour.first, visited, sortedNodes); |
| 41 | + } |
| 42 | + } |
| 43 | + |
| 44 | + // Push the current node onto the stack after processing all its neighbors |
| 45 | + sortedNodes.push(node); |
| 46 | + } |
| 47 | + |
| 48 | + // Method to calculate the shortest path from a given source in a DAG |
| 49 | + void getShortestPath(int source, vector<int>& distance, stack<int>& sortedNodes) { |
| 50 | + distance[source] = 0; // Distance to the source itself is 0 |
| 51 | + |
| 52 | + // Process nodes in topological order |
| 53 | + while (!sortedNodes.empty()) { |
| 54 | + int currentNode = sortedNodes.top(); |
| 55 | + sortedNodes.pop(); |
| 56 | + |
| 57 | + // Update distances for all neighbors if the current node has a valid distance |
| 58 | + if (distance[currentNode] != INT_MAX) { |
| 59 | + for (auto neighbour : adjacencyList[currentNode]) { |
| 60 | + if (distance[currentNode] + neighbour.second < distance[neighbour.first]) { |
| 61 | + distance[neighbour.first] = distance[currentNode] + neighbour.second; |
| 62 | + } |
| 63 | + } |
| 64 | + } |
| 65 | + } |
| 66 | + } |
| 67 | +}; |
| 68 | + |
| 69 | +int main() { |
| 70 | + Graph graph; |
| 71 | + |
| 72 | + // Add edges with weights to the graph |
| 73 | + graph.addEdge(0, 1, 5); |
| 74 | + graph.addEdge(0, 2, 3); |
| 75 | + graph.addEdge(1, 2, 2); |
| 76 | + graph.addEdge(1, 3, 6); |
| 77 | + graph.addEdge(2, 3, 7); |
| 78 | + graph.addEdge(2, 4, 4); |
| 79 | + graph.addEdge(2, 5, 2); |
| 80 | + graph.addEdge(3, 4, -1); |
| 81 | + graph.addEdge(4, 5, -2); |
| 82 | + |
| 83 | + // Print the adjacency list to visualize the graph |
| 84 | + graph.printAdjacencyList(); |
| 85 | + |
| 86 | + int numNodes = 6; // Number of nodes in the graph |
| 87 | + stack<int> sortedNodes; // Stack to store nodes in topological order |
| 88 | + vector<int> visited(numNodes, 0); // Visited array to keep track of visited nodes |
| 89 | + |
| 90 | + // Perform topological sort for all unvisited nodes |
| 91 | + for (int i = 0; i < numNodes; i++) { |
| 92 | + if (!visited[i]) { |
| 93 | + graph.topologicalSort(i, visited, sortedNodes); |
| 94 | + } |
| 95 | + } |
| 96 | + |
| 97 | + int source = 1; // Source node for shortest path calculation |
| 98 | + vector<int> distance(numNodes, INT_MAX); // Initialize distances to infinity |
| 99 | + |
| 100 | + // Compute the shortest paths from the source |
| 101 | + graph.getShortestPath(source, distance, sortedNodes); |
| 102 | + |
| 103 | + // Print the shortest path distances |
| 104 | + cout << "Shortest Path is : "; |
| 105 | + for (int i = 0; i < numNodes; i++) { |
| 106 | + if (distance[i] == INT_MAX) { |
| 107 | + cout << "INF "; |
| 108 | + } else { |
| 109 | + cout << distance[i] << " "; |
| 110 | + } |
| 111 | + } |
| 112 | + cout << endl; |
| 113 | + |
| 114 | + return 0; |
| 115 | +} |
0 commit comments