|
| 1 | +class Solution { |
| 2 | +public: |
| 3 | + // Function to check if a subset sum equal to 'target' exists using dynamic programming with space optimization |
| 4 | + int solve(vector<int>& nums, int n, int target) { |
| 5 | + // Arrays to store the current and next row of the dp table |
| 6 | + vector<int> curr(target+1, 0); // To store the result for the current index |
| 7 | + vector<int> next(target+1, 0); // To store the result for the next index (used in the transition) |
| 8 | + |
| 9 | + // Base case: sum of 0 can always be formed (empty subset) |
| 10 | + curr[0] = 1; |
| 11 | + next[0] = 1; |
| 12 | + |
| 13 | + // Iterate over all indices of nums in reverse (from n-1 to 0) |
| 14 | + for(int index = n-1; index >= 0; index--) { |
| 15 | + // Iterate over all possible target sums from 1 to the desired target sum |
| 16 | + for(int t = 1; t <= target; t++) { |
| 17 | + int include = 0; |
| 18 | + // If the current number can be included (i.e., target - nums[index] >= 0) |
| 19 | + if(t - nums[index] >= 0) include = next[t - nums[index]]; |
| 20 | + |
| 21 | + // Exclude the current element (i.e., use the result from the next index with the same target) |
| 22 | + int exclude = next[t]; |
| 23 | + |
| 24 | + // The result for curr[t] is the logical OR of including or excluding the element |
| 25 | + curr[t] = include or exclude; |
| 26 | + } |
| 27 | + |
| 28 | + // Move the current row to the next row for the next iteration |
| 29 | + next = curr; |
| 30 | + } |
| 31 | + |
| 32 | + // The final result is stored in next[target], which tells if the target sum can be achieved |
| 33 | + return next[target]; |
| 34 | + } |
| 35 | + |
| 36 | + // Main function to check if we can partition the array into two subsets with equal sum |
| 37 | + bool canPartition(vector<int>& nums) { |
| 38 | + int n = nums.size(); |
| 39 | + int total = 0; |
| 40 | + |
| 41 | + // Calculate the total sum of the elements in the array |
| 42 | + for(auto & num : nums) total += num; |
| 43 | + |
| 44 | + // If the total sum is odd, it can't be partitioned into two equal subsets |
| 45 | + if(total & 1) return 0; |
| 46 | + |
| 47 | + // Set the target as half of the total sum |
| 48 | + int target = total / 2; |
| 49 | + |
| 50 | + // Call the solve function to check if a subset with sum equal to 'target' exists |
| 51 | + return solve(nums, n, target); |
| 52 | + } |
| 53 | +}; |
0 commit comments