|
| 1 | +<h1 align='center'>Merge - K Sorted - Lists</h1> |
| 2 | + |
| 3 | +## Problem Statement |
| 4 | + |
| 5 | +**Problem URL :** [Merge K Sorted Lists](https://leetcode.com/problems/merge-k-sorted-lists/) |
| 6 | + |
| 7 | + |
| 8 | + |
| 9 | + |
| 10 | +## Problem Explanation |
| 11 | +Given `K` sorted linked lists, we need to merge them into a single sorted linked list. The final merged list should contain all nodes from the original lists in sorted order. |
| 12 | + |
| 13 | +**Example**: |
| 14 | +Suppose we have the following 3 sorted linked lists: |
| 15 | + |
| 16 | +- `List 1: 1 -> 4 -> 7` |
| 17 | +- `List 2: 2 -> 5 -> 8` |
| 18 | +- `List 3: 3 -> 6 -> 9` |
| 19 | + |
| 20 | +After merging, the final sorted linked list should be: |
| 21 | +`1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8 -> 9` |
| 22 | + |
| 23 | +### Approach: |
| 24 | + |
| 25 | +To solve this problem efficiently, we use a **Min-Heap (priority queue)**. |
| 26 | + |
| 27 | +1. **Use a Min-Heap to Store List Heads**: |
| 28 | + - We add the head of each linked list to the min-heap. |
| 29 | + - The min-heap automatically sorts nodes based on their values, keeping the smallest value node at the top. |
| 30 | + |
| 31 | +2. **Process the Heap Until Empty**: |
| 32 | + - Extract the smallest node from the heap and add it to the merged list. |
| 33 | + - If the extracted node has a next node, insert that next node into the min-heap. |
| 34 | + - Repeat this until all nodes have been processed, resulting in a fully merged sorted list. |
| 35 | + |
| 36 | +This approach is efficient because the min-heap allows us to retrieve the smallest node in `O(log K)` time for each insertion and deletion. |
| 37 | + |
| 38 | +## Problem Solution |
| 39 | +```cpp |
| 40 | +/** |
| 41 | + * Definition for singly-linked list. |
| 42 | + * struct ListNode { |
| 43 | + * int val; |
| 44 | + * ListNode *next; |
| 45 | + * ListNode() : val(0), next(nullptr) {} |
| 46 | + * ListNode(int x) : val(x), next(nullptr) {} |
| 47 | + * ListNode(int x, ListNode *next) : val(x), next(next) {} |
| 48 | + * }; |
| 49 | + */ |
| 50 | + |
| 51 | +class compare{ |
| 52 | + public: |
| 53 | + bool operator()(ListNode* a, ListNode* b){ |
| 54 | + return a -> val > b -> val; |
| 55 | + } |
| 56 | +}; |
| 57 | +class Solution { |
| 58 | +public: |
| 59 | + ListNode* mergeKLists(vector<ListNode*>& lists) { |
| 60 | + priority_queue<ListNode*, vector<ListNode*>, compare> pq; |
| 61 | + |
| 62 | + int k = lists.size(); |
| 63 | + |
| 64 | + if(k == 0) return NULL; |
| 65 | + for(int i = 0; i < k; i++) if(lists[i] != NULL) pq.push(lists[i]); |
| 66 | + |
| 67 | + ListNode* head = NULL; |
| 68 | + ListNode* tail = NULL; |
| 69 | + |
| 70 | + while(pq.size() > 0){ |
| 71 | + ListNode* top = pq.top(); |
| 72 | + pq.pop(); |
| 73 | + |
| 74 | + if(head == NULL){ |
| 75 | + head = top; |
| 76 | + tail = top; |
| 77 | + }else{ |
| 78 | + tail -> next = top; |
| 79 | + tail = top; |
| 80 | + } |
| 81 | + |
| 82 | + if(top -> next != NULL) pq.push(top -> next); |
| 83 | + } |
| 84 | + |
| 85 | + return head; |
| 86 | + } |
| 87 | +}; |
| 88 | +``` |
| 89 | + |
| 90 | +## Problem Solution Explanation |
| 91 | + |
| 92 | +```cpp |
| 93 | +/** |
| 94 | + * Definition for singly-linked list. |
| 95 | + * struct ListNode { |
| 96 | + * int val; |
| 97 | + * ListNode *next; |
| 98 | + * ListNode() : val(0), next(nullptr) {} |
| 99 | + * ListNode(int x) : val(x), next(nullptr) {} |
| 100 | + * ListNode(int x, ListNode *next) : val(x), next(next) {} |
| 101 | + * }; |
| 102 | + */ |
| 103 | + |
| 104 | +class compare{ |
| 105 | + public: |
| 106 | + bool operator()(ListNode* a, ListNode* b){ |
| 107 | + return a -> val > b -> val; |
| 108 | + } |
| 109 | +}; |
| 110 | +``` |
| 111 | + |
| 112 | +1. **Explanation**: |
| 113 | + - The `compare` class is a custom comparator for the min-heap. |
| 114 | + - The `operator()` overload function returns `true` if `a` has a greater value than `b`. This ensures the min-heap orders nodes based on increasing values. |
| 115 | + |
| 116 | + |
| 117 | + |
| 118 | +```cpp |
| 119 | +class Solution { |
| 120 | +public: |
| 121 | + ListNode* mergeKLists(vector<ListNode*>& lists) { |
| 122 | + priority_queue<ListNode*, vector<ListNode*>, compare> pq; |
| 123 | +``` |
| 124 | +
|
| 125 | +2. **Explanation**: |
| 126 | + - `mergeKLists` is the main function that merges `K` sorted lists. |
| 127 | + - A min-heap `pq` is created with `ListNode*` pointers, and the `compare` class as the comparator. |
| 128 | +
|
| 129 | +
|
| 130 | +
|
| 131 | +```cpp |
| 132 | + int k = lists.size(); |
| 133 | + |
| 134 | + if(k == 0) return NULL; |
| 135 | + for(int i = 0; i < k; i++) if(lists[i] != NULL) pq.push(lists[i]); |
| 136 | +``` |
| 137 | + |
| 138 | +3. **Explanation**: |
| 139 | + - `k` is the number of lists. |
| 140 | + - If `k` is 0 (i.e., there are no lists), we return `NULL`. |
| 141 | + - We iterate over each list and push its head node into the min-heap if it’s not `NULL`. |
| 142 | + |
| 143 | + |
| 144 | + |
| 145 | +```cpp |
| 146 | + ListNode* head = NULL; |
| 147 | + ListNode* tail = NULL; |
| 148 | +``` |
| 149 | + |
| 150 | +4. **Explanation**: |
| 151 | + - `head` will store the head of the merged list, and `tail` will help us append nodes to the merged list. |
| 152 | + |
| 153 | + |
| 154 | + |
| 155 | +```cpp |
| 156 | + while(pq.size() > 0){ |
| 157 | + ListNode* top = pq.top(); |
| 158 | + pq.pop(); |
| 159 | +``` |
| 160 | +
|
| 161 | +5. **Explanation**: |
| 162 | + - We process nodes in the min-heap until it’s empty. |
| 163 | + - `top` stores the smallest node in the min-heap, and we remove it from the heap using `pop()`. |
| 164 | +
|
| 165 | +
|
| 166 | +
|
| 167 | +```cpp |
| 168 | + if(head == NULL){ |
| 169 | + head = top; |
| 170 | + tail = top; |
| 171 | + }else{ |
| 172 | + tail -> next = top; |
| 173 | + tail = top; |
| 174 | + } |
| 175 | +``` |
| 176 | + |
| 177 | +6. **Explanation**: |
| 178 | + - If `head` is `NULL`, it means this is the first node being added to our merged list, so we set both `head` and `tail` to `top`. |
| 179 | + - Otherwise, we append `top` to `tail->next` and update `tail` to point to this new node. |
| 180 | + |
| 181 | + |
| 182 | + |
| 183 | +```cpp |
| 184 | + if(top -> next != NULL) pq.push(top -> next); |
| 185 | + } |
| 186 | +``` |
| 187 | + |
| 188 | +7. **Explanation**: |
| 189 | + - If the node `top` has a next node, we push `top->next` into the min-heap. |
| 190 | + - This step ensures that the heap always has the next smallest element from any list. |
| 191 | + |
| 192 | + |
| 193 | + |
| 194 | +```cpp |
| 195 | + return head; |
| 196 | + } |
| 197 | +}; |
| 198 | +``` |
| 199 | + |
| 200 | +8. **Explanation**: |
| 201 | + - Finally, we return `head`, which points to the start of the fully merged sorted linked list. |
| 202 | + |
| 203 | + |
| 204 | + |
| 205 | +### Step 3: Example Walkthrough |
| 206 | + |
| 207 | +**Example**: |
| 208 | +Input: |
| 209 | +```cpp |
| 210 | +lists = [ |
| 211 | + List 1: 1 -> 4 -> 7, |
| 212 | + List 2: 2 -> 5 -> 8, |
| 213 | + List 3: 3 -> 6 -> 9 |
| 214 | +] |
| 215 | +``` |
| 216 | + |
| 217 | +Process: |
| 218 | +1. Push the head of each list into the min-heap: |
| 219 | + - Min-heap contains: `[1, 2, 3]` |
| 220 | + |
| 221 | +2. Pop the smallest element (`1`) from the heap, append it to the result list, and push its next node (`4`) to the heap: |
| 222 | + - Result list: `1` |
| 223 | + - Min-heap: `[2, 3, 4]` |
| 224 | + |
| 225 | +3. Repeat until all nodes are processed: |
| 226 | + - After each step, the min-heap is rebalanced, and the smallest element is appended to the result list. |
| 227 | + |
| 228 | +Final merged result: |
| 229 | +`1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8 -> 9` |
| 230 | + |
| 231 | +Output: |
| 232 | +`1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8 -> 9` |
| 233 | + |
| 234 | + |
| 235 | + |
| 236 | +### Step 4: Time and Space Complexity |
| 237 | + |
| 238 | +1. **Time Complexity**: |
| 239 | + - Inserting and deleting nodes in a heap of size `K` takes `O(log K)` time. |
| 240 | + - There are `N` total nodes across all lists, so we perform `N` insertions and deletions. |
| 241 | + - The time complexity is therefore `O(N * log K)`. |
| 242 | + |
| 243 | +2. **Space Complexity**: |
| 244 | + - The space complexity is `O(K)`, as the heap can contain up to `K` nodes at any time (one from each list). |
| 245 | + |
| 246 | +### Step 5: Additional Recommendations |
| 247 | + |
| 248 | +- **Understand the Priority Queue**: This solution is highly efficient because it leverages a min-heap. Practice using priority queues to get comfortable with their behavior. |
| 249 | +- **Practice Edge Cases**: Ensure you handle edge cases such as empty lists, a single list, or lists with only one element. |
| 250 | +- **Experiment with Larger Data Sets**: Testing with larger lists can give you a better sense of the efficiency of this approach and help identify potential optimizations. |
| 251 | +- **NOTE :** [Approach 2](https://github.com/JawadSher/DSA-LeetCode-GFG-Problems-Repository/tree/main/14%20-%20Linked%20List%20Data%20Structure%20Problems/01%20-%20Singly%20Linked%20List%20Problems/24%20-%20Merge%20K%20Sorted%20Linked%20Lists) |
| 252 | + |
| 253 | +This explanation should provide a comprehensive understanding of the solution approach, code, and complexity analysis. |
0 commit comments