|
| 1 | +#include<iostream> |
| 2 | +#include<vector> |
| 3 | +#include<list> |
| 4 | +#include<climits> |
| 5 | + |
| 6 | +using namespace std; |
| 7 | + |
| 8 | +class Graph { |
| 9 | +public: |
| 10 | + vector<list<pair<int, int>>> adjacencyList; // Adjacency list to store the graph (each list element is a pair: destination vertex and edge weight) |
| 11 | + |
| 12 | + // Constructor to initialize the adjacency list with n vertices |
| 13 | + Graph(int n) { |
| 14 | + adjacencyList.resize(n); // Resize the adjacency list to have n vertices |
| 15 | + } |
| 16 | + |
| 17 | + // Method to add an undirected edge between source and destination with a given weight |
| 18 | + void addEdge(int source, int destination, int weight) { |
| 19 | + adjacencyList[source].push_back({destination, weight}); |
| 20 | + adjacencyList[destination].push_back({source, weight}); |
| 21 | + } |
| 22 | + |
| 23 | + // Method to print the adjacency list of the graph |
| 24 | + void printAdjacencyList() { |
| 25 | + for (int i = 0; i < adjacencyList.size(); ++i) { |
| 26 | + cout << i << " -> "; // Print the vertex number |
| 27 | + for (auto neighbour : adjacencyList[i]) { // Traverse through all neighbors of the vertex |
| 28 | + cout << "(" << neighbour.first << ", " << neighbour.second << "), "; // Print destination vertex and weight |
| 29 | + } |
| 30 | + cout << endl; |
| 31 | + } |
| 32 | + } |
| 33 | + |
| 34 | + // Implementation of Prim's Algorithm to find the Minimum Spanning Tree (MST) |
| 35 | + void PrimsAlgorithm(int n, vector<int>& key, vector<bool>& MST, vector<int>& parent, int& totalWeight) { |
| 36 | + |
| 37 | + key[0] = 0; // Start from vertex 0, minimum key for starting point |
| 38 | + parent[0] = -1; // No parent for the start node |
| 39 | + |
| 40 | + for (int count = 0; count < n; ++count) { |
| 41 | + // Step 1: Find the node with the minimum key that is not yet in MST |
| 42 | + int minKeyValue = INT_MAX; // Initialize minimum key value to infinity |
| 43 | + int selectedNode = -1; // Variable to store the selected node with minimum key |
| 44 | + |
| 45 | + // Iterate through all nodes to find the node with the minimum key that is not in the MST |
| 46 | + for (int i = 0; i < n; ++i) { |
| 47 | + if (!MST[i] && key[i] < minKeyValue) { // If the node is not in MST and has a smaller key |
| 48 | + minKeyValue = key[i]; // Update the minimum key value |
| 49 | + selectedNode = i; // Update the selected node |
| 50 | + } |
| 51 | + } |
| 52 | + |
| 53 | + // Step 2: Include this node in MST |
| 54 | + MST[selectedNode] = true; // Mark the node as included in MST |
| 55 | + |
| 56 | + // Step 3: Update the total weight of the MST by adding the key value of the selected node |
| 57 | + if (parent[selectedNode] != -1) { // If the selected node has a parent |
| 58 | + totalWeight += key[selectedNode]; // Add its key value to the total weight |
| 59 | + } |
| 60 | + |
| 61 | + // Step 4: Visit all adjacent nodes and update their key values |
| 62 | + for (auto neighbor : adjacencyList[selectedNode]) { // Traverse through all neighbors of the selected node |
| 63 | + int adjacentNode = neighbor.first; // Get the adjacent node |
| 64 | + int edgeWeight = neighbor.second; // Get the weight of the edge |
| 65 | + if (!MST[adjacentNode] && edgeWeight < key[adjacentNode]) { // If the adjacent node is not in MST and the edge weight is smaller than its current key |
| 66 | + key[adjacentNode] = edgeWeight; // Update the key value of the adjacent node |
| 67 | + parent[adjacentNode] = selectedNode; // Set the parent of the adjacent node |
| 68 | + } |
| 69 | + } |
| 70 | + } |
| 71 | + } |
| 72 | +}; |
| 73 | + |
| 74 | +int main() { |
| 75 | + Graph g(5); // Create a graph object with 5 vertices |
| 76 | + |
| 77 | + // Add edges to the graph (source, destination, weight) |
| 78 | + g.addEdge(0, 1, 2); // Edge between vertex 0 and vertex 1 with weight 2 |
| 79 | + g.addEdge(0, 3, 6); // Edge between vertex 0 and vertex 3 with weight 6 |
| 80 | + g.addEdge(1, 2, 3); // Edge between vertex 1 and vertex 2 with weight 3 |
| 81 | + g.addEdge(1, 4, 5); // Edge between vertex 1 and vertex 4 with weight 5 |
| 82 | + g.addEdge(1, 3, 8); // Edge between vertex 1 and vertex 3 with weight 8 |
| 83 | + g.addEdge(2, 4, 7); // Edge between vertex 2 and vertex 4 with weight 7 |
| 84 | + |
| 85 | + // Print the adjacency list of the graph |
| 86 | + cout << "Adjacency List of the Graph:" << endl; |
| 87 | + g.printAdjacencyList(); |
| 88 | + |
| 89 | + int n = 5; // Number of vertices |
| 90 | + |
| 91 | + vector<int> key(n, INT_MAX); // Key values for each node, initialized to infinity |
| 92 | + vector<bool> MST(n, false); // To track nodes included in MST (initialize all as false) |
| 93 | + vector<int> parent(n, -1); // To store the parent of each node in MST (initialize all as -1) |
| 94 | + int totalWeight = 0; // To store the total weight of the MST |
| 95 | + |
| 96 | + // Apply Prim's algorithm to find the Minimum Spanning Tree |
| 97 | + g.PrimsAlgorithm(n, key, MST, parent, totalWeight); |
| 98 | + |
| 99 | + // Print the total weight of the Minimum Spanning Tree |
| 100 | + cout << "\nMinimum Spanning Tree Weight is: " << totalWeight << endl; |
| 101 | + |
| 102 | + // Optional: Print the MST edges (parent-child relationship with their respective edge weights) |
| 103 | + cout << "\nEdges in the Minimum Spanning Tree:" << endl; |
| 104 | + for (int i = 1; i < n; ++i) { |
| 105 | + cout << parent[i] << " - " << i << " with weight " << key[i] << endl; |
| 106 | + } |
| 107 | + |
| 108 | + return 0; // Return 0 to indicate successful execution |
| 109 | +} |
0 commit comments