|
| 1 | +class Solution { |
| 2 | +public: |
| 3 | + // Helper function to solve the problem of picking non-adjacent slices |
| 4 | + int solve(vector<int>& slices){ |
| 5 | + int k = slices.size(); // Total number of slices (3 * n) |
| 6 | + |
| 7 | + // Initialize 3 arrays for dynamic programming: |
| 8 | + // prev, curr, and next are used to store the results of previous, current, and next steps, respectively. |
| 9 | + vector<int> prev(k+2, 0); // To store the results of the previous step for dp |
| 10 | + vector<int> curr(k+2, 0); // To store the results of the current step for dp |
| 11 | + vector<int> next(k+2, 0); // To store the results of the next step for dp |
| 12 | + |
| 13 | + // DP for case 1 (excluding the last slice) |
| 14 | + for (int index = k - 2; index >= 0; index--) { // Iterate backwards through the slices (0 to k-2) |
| 15 | + for (int n = 1; n <= k / 3; n++) { // Iterate through the number of slices left to pick |
| 16 | + // Option 1: Take the current slice and move 2 steps forward (to avoid picking adjacent slices) |
| 17 | + int takeSlice = slices[index] + next[n - 1]; |
| 18 | + |
| 19 | + // Option 2: Skip the current slice and move 1 step forward |
| 20 | + int noTakeSlice = 0 + curr[n]; |
| 21 | + |
| 22 | + // Store the maximum of the two options (take or skip) |
| 23 | + prev[n] = max(takeSlice, noTakeSlice); |
| 24 | + } |
| 25 | + // Update the dp arrays by shifting |
| 26 | + next = curr; // Move current to next |
| 27 | + curr = prev; // Move previous to current |
| 28 | + } |
| 29 | + |
| 30 | + // Store the result for case 1, excluding the last slice |
| 31 | + int case1 = curr[k / 3]; // We start from index 0 and need to pick k/3 slices |
| 32 | + |
| 33 | + // DP for case 2 (excluding the first slice) |
| 34 | + vector<int> prev1(k+2, 0); // To store the results for the second case |
| 35 | + vector<int> curr1(k+2, 0); // To store the current results for the second case |
| 36 | + vector<int> next1(k+2, 0); // To store the next step results for the second case |
| 37 | + |
| 38 | + // Iterate through slices for case 2, starting from index 1 and excluding the first slice |
| 39 | + for (int index = k - 1; index >= 1; index--) { // Iterate backwards through the slices (1 to k-1) |
| 40 | + for (int n = 1; n <= k / 3; n++) { // Iterate through the number of slices left to pick |
| 41 | + // Option 1: Take the current slice and move 2 steps forward |
| 42 | + int takeSlice = slices[index] + next1[n - 1]; |
| 43 | + |
| 44 | + // Option 2: Skip the current slice and move 1 step forward |
| 45 | + int noTakeSlice = 0 + curr1[n]; |
| 46 | + |
| 47 | + // Store the maximum of the two options (take or skip) |
| 48 | + prev1[n] = max(takeSlice, noTakeSlice); |
| 49 | + } |
| 50 | + // Update the dp arrays by shifting |
| 51 | + next1 = curr1; // Move current to next |
| 52 | + curr1 = prev1; // Move previous to current |
| 53 | + } |
| 54 | + |
| 55 | + // Store the result for case 2, excluding the first slice |
| 56 | + int case2 = curr1[k / 3]; // We start from index 1 and need to pick k/3 slices |
| 57 | + |
| 58 | + // Return the maximum of the two cases |
| 59 | + return max(case1, case2); |
| 60 | + } |
| 61 | + |
| 62 | + // Main function to calculate the maximum sum of slices |
| 63 | + int maxSizeSlices(vector<int>& slices) { |
| 64 | + return solve(slices); // Call the solve function to compute the result |
| 65 | + } |
| 66 | +}; |
0 commit comments