|
| 1 | +class Solution { |
| 2 | + public: |
| 3 | + // Helper function to perform a topological sort using DFS |
| 4 | + void topologicalSort(int node, vector<int>& visited, stack<int>& Stack, unordered_map<int, list<pair<int, int>>>& adjacencyList) { |
| 5 | + visited[node] = true; // Mark the current node as visited |
| 6 | + |
| 7 | + // Traverse all the neighbors of the current node |
| 8 | + for (auto neighbour : adjacencyList[node]) { |
| 9 | + if (!visited[neighbour.first]) { // If the neighbor is not visited, recursively sort |
| 10 | + topologicalSort(neighbour.first, visited, Stack, adjacencyList); |
| 11 | + } |
| 12 | + } |
| 13 | + |
| 14 | + // Push the current node to the stack after visiting all its neighbors |
| 15 | + Stack.push(node); |
| 16 | + } |
| 17 | + |
| 18 | + // Helper function to calculate the shortest path from the source node |
| 19 | + void getShortestPath(int src, vector<int>& distance, unordered_map<int, list<pair<int, int>>>& adjacencyList, stack<int>& Stack) { |
| 20 | + distance[src] = 0; // Set the source node's distance to 0 |
| 21 | + |
| 22 | + // Process nodes in topological order |
| 23 | + while (!Stack.empty()) { |
| 24 | + int currNode = Stack.top(); // Get the current node from the stack |
| 25 | + Stack.pop(); |
| 26 | + |
| 27 | + // Update distances to all neighbors if the current node has a valid distance |
| 28 | + if (distance[currNode] != INT_MAX) { |
| 29 | + for (auto neighbour : adjacencyList[currNode]) { |
| 30 | + int newDistance = distance[currNode] + neighbour.second; // Calculate new distance |
| 31 | + if (newDistance < distance[neighbour.first]) { // If the new distance is shorter, update it |
| 32 | + distance[neighbour.first] = newDistance; |
| 33 | + } |
| 34 | + } |
| 35 | + } |
| 36 | + } |
| 37 | + } |
| 38 | + |
| 39 | + // Main function to find the shortest path in a Directed Acyclic Graph (DAG) |
| 40 | + vector<int> shortestPath(int V, int E, vector<vector<int>>& edges) { |
| 41 | + // Step 1: Create an adjacency list for the graph |
| 42 | + unordered_map<int, list<pair<int, int>>> adjacencyList; |
| 43 | + for (auto edge : edges) { |
| 44 | + int source = edge[0]; |
| 45 | + int destination = edge[1]; |
| 46 | + int weight = edge[2]; |
| 47 | + adjacencyList[source].push_back({destination, weight}); // Add the edge with weight |
| 48 | + } |
| 49 | + |
| 50 | + // Step 2: Perform a topological sort |
| 51 | + stack<int> Stack; // Stack to store the topological order |
| 52 | + vector<int> visited(V, false); // Visited array to track visited nodes |
| 53 | + for (int i = 0; i < V; i++) { |
| 54 | + if (!visited[i]) { // For unvisited nodes, perform a topological sort |
| 55 | + topologicalSort(i, visited, Stack, adjacencyList); |
| 56 | + } |
| 57 | + } |
| 58 | + |
| 59 | + // Step 3: Calculate shortest paths from the source node |
| 60 | + int src = 0; // Assuming 0 is the source node |
| 61 | + vector<int> distance(V, INT_MAX); // Initialize distances to infinity |
| 62 | + getShortestPath(src, distance, adjacencyList, Stack); |
| 63 | + |
| 64 | + // Step 4: Replace distances that are still INT_MAX with -1 to indicate no path |
| 65 | + for (int& d : distance) { |
| 66 | + if (d == INT_MAX) { |
| 67 | + d = -1; |
| 68 | + } |
| 69 | + } |
| 70 | + |
| 71 | + return distance; // Return the vector containing shortest distances |
| 72 | + } |
| 73 | +}; |
0 commit comments