|
| 1 | +class Solution { |
| 2 | +public: |
| 3 | + // Helper function to solve the coin change problem using recursion with memoization |
| 4 | + int solve(vector<int>& coins, int x, vector<int>& dp) { |
| 5 | + // Base case: If the target amount is 0, no coins are needed |
| 6 | + if(x == 0) return 0; |
| 7 | + |
| 8 | + // Base case: If the target amount is negative, return an invalid result |
| 9 | + if(x < 0) return INT_MAX; |
| 10 | + |
| 11 | + // If the result for the current amount is already computed, return it |
| 12 | + if(dp[x] != -1) return dp[x]; |
| 13 | + |
| 14 | + // Initialize the minimum number of coins required to a large value |
| 15 | + int mini = INT_MAX; |
| 16 | + |
| 17 | + // Iterate through each coin |
| 18 | + for(int i = 0; i < coins.size(); i++) { |
| 19 | + // Recursive call: Try using the current coin and solve for the remaining amount |
| 20 | + int ans = solve(coins, x - coins[i], dp); |
| 21 | + |
| 22 | + // If the recursive result is valid, update the minimum number of coins |
| 23 | + if(ans != INT_MAX) |
| 24 | + mini = min(mini, 1 + ans); // Add 1 to include the current coin |
| 25 | + } |
| 26 | + |
| 27 | + // Store the computed result in the memoization array |
| 28 | + dp[x] = mini; |
| 29 | + |
| 30 | + // Return the computed result |
| 31 | + return mini; |
| 32 | + } |
| 33 | + |
| 34 | + // Main function to find the minimum number of coins needed to make up the given amount |
| 35 | + int coinChange(vector<int>& coins, int amount) { |
| 36 | + // Create a memoization array initialized with -1 |
| 37 | + vector<int> dp(amount + 1, -1); |
| 38 | + |
| 39 | + // Call the recursive helper function with memoization |
| 40 | + int ans = solve(coins, amount, dp); |
| 41 | + |
| 42 | + // If no valid combination of coins can form the amount, return -1 |
| 43 | + if(ans == INT_MAX) return -1; |
| 44 | + |
| 45 | + // Otherwise, return the computed result |
| 46 | + return ans; |
| 47 | + } |
| 48 | +}; |
0 commit comments