|
| 1 | +class Solution { |
| 2 | +public: |
| 3 | + // Recursive function to calculate the number of ways to roll the dice to achieve the target |
| 4 | + long long solve(int dice, int faces, int target) { |
| 5 | + // Base case: If the target becomes negative, it's not possible to achieve it |
| 6 | + if (target < 0) return 0; |
| 7 | + |
| 8 | + // Base case: If no dice are left but the target is not zero, it's not a valid way |
| 9 | + if (dice == 0 && target != 0) return 0; |
| 10 | + |
| 11 | + // Base case: If there are dice left but the target is zero, it's also invalid |
| 12 | + if (target == 0 && dice != 0) return 0; |
| 13 | + |
| 14 | + // Base case: If no dice are left and the target is zero, it's a valid way |
| 15 | + if (dice == 0 && target == 0) return 1; |
| 16 | + |
| 17 | + // Initialize a variable to store the number of ways |
| 18 | + long long ans = 0; |
| 19 | + |
| 20 | + // Loop through all possible outcomes for a single dice roll |
| 21 | + for (int i = 1; i <= faces; i++) { |
| 22 | + // Recursively calculate the ways to achieve the remaining target |
| 23 | + // after rolling one die with the current face value `i` |
| 24 | + ans += solve(dice - 1, faces, target - i); |
| 25 | + } |
| 26 | + |
| 27 | + // Return the total number of ways |
| 28 | + return ans; |
| 29 | + } |
| 30 | + |
| 31 | + // Function to calculate the number of ways to roll `n` dice with `k` faces to achieve `target` |
| 32 | + int numRollsToTarget(int n, int k, int target) { |
| 33 | + // Call the helper recursive function |
| 34 | + return solve(n, k, target); |
| 35 | + } |
| 36 | +}; |
0 commit comments