|
1 | 1 | from __future__ import annotations |
2 | 2 |
|
| 3 | +from collections import defaultdict |
3 | 4 | from pathlib import Path |
4 | 5 | from typing import Literal, Optional, Union, TYPE_CHECKING |
5 | 6 |
|
6 | 7 | import narwhals as nw |
| 8 | +from statsmodels.stats.weightstats import DescrStatsW |
| 9 | +from uncertainties import ufloat, Variable |
| 10 | + |
| 11 | +from hdxms_datasets.backend import BACKEND |
7 | 12 |
|
8 | 13 |
|
9 | 14 | if TYPE_CHECKING: |
|
12 | 17 |
|
13 | 18 | TIME_FACTORS = {"s": 1, "m": 60.0, "min": 60.0, "h": 3600, "d": 86400} |
14 | 19 | TEMPERATURE_OFFSETS = {"c": 273.15, "celsius": 273.15, "k": 0.0, "kelvin": 0.0} |
| 20 | +PROTON_MASS = 1.0072764665789 |
| 21 | + |
| 22 | + |
| 23 | +STATE_DATA_COLUMN_ORDER = [ |
| 24 | + "protein", |
| 25 | + "start", |
| 26 | + "end", |
| 27 | + "stop", |
| 28 | + "sequence", |
| 29 | + "modification", |
| 30 | + "fragment", |
| 31 | + "maxuptake", |
| 32 | + "mhp", |
| 33 | + "state", |
| 34 | + "exposure", |
| 35 | + "center", |
| 36 | + "center_sd", |
| 37 | + "uptake", |
| 38 | + "uptake_sd", |
| 39 | + "rt", |
| 40 | + "rt_sd", |
| 41 | +] |
| 42 | + |
| 43 | + |
| 44 | +def ufloat_stats(array, weights) -> Variable: |
| 45 | + """Calculate the weighted mean and standard deviation.""" |
| 46 | + weighted_stats = DescrStatsW(array, weights=weights, ddof=0) |
| 47 | + return ufloat(weighted_stats.mean, weighted_stats.std) |
| 48 | + |
| 49 | + |
| 50 | +def records_to_dict(records: list[dict]) -> dict[str, list]: |
| 51 | + """ |
| 52 | + Convert a list of records to a dictionary of lists. |
| 53 | +
|
| 54 | + Args: |
| 55 | + records: List of dictionaries. |
| 56 | +
|
| 57 | + Returns: |
| 58 | + Dictionary with keys as column names and values as lists. |
| 59 | + """ |
| 60 | + |
| 61 | + df_dict = defaultdict(list) |
| 62 | + for record in records: |
| 63 | + for key, value in record.items(): |
| 64 | + df_dict[key].append(value) |
| 65 | + |
| 66 | + return dict(df_dict) |
| 67 | + |
| 68 | + |
| 69 | +def dynamx_cluster_to_state(cluster_data: nw.DataFrame, nd_exposure: float = 0.0) -> nw.DataFrame: |
| 70 | + """ |
| 71 | + convert dynamx cluster data to state data |
| 72 | + must contain only a single state |
| 73 | + """ |
| 74 | + |
| 75 | + assert len(cluster_data["state"].unique()) == 1, "Multiple states found in data" |
| 76 | + |
| 77 | + # determine undeuterated masses per peptide |
| 78 | + nd_data = cluster_data.filter(nw.col("exposure") == nd_exposure) |
| 79 | + nd_peptides: list[tuple[int, int]] = sorted( |
| 80 | + {(start, end) for start, end in zip(nd_data["start"], nd_data["end"])} |
| 81 | + ) |
| 82 | + |
| 83 | + peptides_nd_mass = {} |
| 84 | + for p in nd_peptides: |
| 85 | + start, end = p |
| 86 | + df_nd_peptide = nd_data.filter((nw.col("start") == start) & (nw.col("end") == end)) |
| 87 | + |
| 88 | + masses = df_nd_peptide["z"] * (df_nd_peptide["center"] - PROTON_MASS) |
| 89 | + nd_mass = ufloat_stats(masses, df_nd_peptide["inten"]) |
| 90 | + |
| 91 | + peptides_nd_mass[p] = nd_mass |
| 92 | + |
| 93 | + groups = cluster_data.group_by(["start", "end", "exposure"]) |
| 94 | + unique_columns = [ |
| 95 | + "end", |
| 96 | + "exposure", |
| 97 | + "fragment", |
| 98 | + "maxuptake", |
| 99 | + "mhp", |
| 100 | + "modification", |
| 101 | + "protein", |
| 102 | + "sequence", |
| 103 | + "start", |
| 104 | + "state", |
| 105 | + "stop", |
| 106 | + ] |
| 107 | + records = [] |
| 108 | + for (start, end, exposure), df_group in groups: |
| 109 | + record = {col: df_group[col][0] for col in unique_columns} |
| 110 | + |
| 111 | + rt = ufloat_stats(df_group["rt"], df_group["inten"]) |
| 112 | + record["rt"] = rt.nominal_value |
| 113 | + record["rt_sd"] = rt.std_dev |
| 114 | + |
| 115 | + # state data 'center' is mass as if |charge| would be 1 |
| 116 | + center = ufloat_stats( |
| 117 | + df_group["z"] * (df_group["center"] - PROTON_MASS) + PROTON_MASS, df_group["inten"] |
| 118 | + ) |
| 119 | + record["center"] = center.nominal_value |
| 120 | + record["center_sd"] = center.std_dev |
| 121 | + |
| 122 | + masses = df_group["z"] * (df_group["center"] - PROTON_MASS) |
| 123 | + exp_mass = ufloat_stats(masses, df_group["inten"]) |
| 124 | + |
| 125 | + if (start, end) in peptides_nd_mass: |
| 126 | + uptake = exp_mass - peptides_nd_mass[(start, end)] |
| 127 | + record["uptake"] = uptake.nominal_value |
| 128 | + record["uptake_sd"] = uptake.std_dev |
| 129 | + else: |
| 130 | + record["uptake"] = None |
| 131 | + record["uptake_sd"] = None |
| 132 | + |
| 133 | + records.append(record) |
| 134 | + |
| 135 | + d = records_to_dict(records) |
| 136 | + df = nw.from_dict(d, backend=BACKEND) |
| 137 | + |
| 138 | + if set(df.columns) == set(STATE_DATA_COLUMN_ORDER): |
| 139 | + df = df[STATE_DATA_COLUMN_ORDER] |
| 140 | + |
| 141 | + return df |
15 | 142 |
|
16 | 143 |
|
17 | 144 | # overload typing to get correct return type |
|
0 commit comments