@@ -81,15 +81,23 @@ def train_LSTM_network(start_date, ticker, validation_date):
8181 print ("prediction is finished" )
8282
8383
84+ # The Main function requires 3 major variables
85+ # Ticker => defines the short code of a stock
86+ # Start date => Date when we want to start using the data for training, usually the first data point of the stock
87+ # Validation date => Date when we want to start partitioning our data from training to validation
8488if __name__ == '__main__' :
85- STOCK_START_DATE = pd . to_datetime ( '2004-08-01' )
89+
8690 STOCK_TICKER = 'GOOG'
91+ STOCK_START_DATE = pd .to_datetime ('2004-08-01' )
92+ STOCK_VALIDATION_DATE = pd .to_datetime ('2017-01-01' )
8793 EPOCHS = 100
8894 BATCH_SIZE = 32
8995 TIME_STEPS = 60
90- token = secrets .token_hex (16 )
91- project_folder = os .path .join (os .getcwd (), token )
96+ TOKEN = secrets .token_hex (16 )
97+ # create project run folder
98+ project_folder = os .path .join (os .getcwd (), TOKEN )
9299 if not os .path .exists (project_folder ):
93100 os .makedirs (project_folder )
94- stock_validation_date = pd .to_datetime ('2017-01-01' )
95- train_LSTM_network (STOCK_START_DATE , STOCK_TICKER , stock_validation_date )
101+
102+ # Execute Deep Learning model
103+ train_LSTM_network (STOCK_START_DATE , STOCK_TICKER , STOCK_VALIDATION_DATE )
0 commit comments