Skip to content

Commit 1cbcca2

Browse files
committed
Indicate default Float32 eltype in docstrings
1 parent da08fbd commit 1cbcca2

File tree

2 files changed

+3
-3
lines changed

2 files changed

+3
-3
lines changed

src/gradient.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -75,8 +75,8 @@ function call_analyzer(
7575
end
7676

7777
"""
78-
SmoothGrad(analyzer, [n=50, std=1.0, rng=GLOBAL_RNG])
79-
SmoothGrad(analyzer, [n=50, distribution=Normal(0, 1), rng=GLOBAL_RNG])
78+
SmoothGrad(analyzer, [n=50, std=1.0f0, rng=GLOBAL_RNG])
79+
SmoothGrad(analyzer, [n=50, distribution=Normal(0.0f0, 1.0f0), rng=GLOBAL_RNG])
8080
8181
Analyze model by calculating a smoothed sensitivity map.
8282
This is done by averaging sensitivity maps of a `Gradient` analyzer over random samples

src/input_augmentation.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -90,7 +90,7 @@ end
9090
A wrapper around analyzers that augments the input with `n` samples of additive noise sampled from a scalar `distribution`.
9191
This input augmentation is then averaged to return an `Explanation`.
9292
93-
Defaults to the normal distribution `Normal(0, std^2)` with `std=1`.
93+
Defaults to the normal distribution `Normal(0, std^2)` with `std=1.0f0`.
9494
For optimal results, $REF_SMILKOV_SMOOTHGRAD recommends setting `std` between 10% and 20% of the input range of each sample,
9595
e.g. `std = 0.1 * (maximum(input) - minimum(input))`.
9696

0 commit comments

Comments
 (0)