@@ -118,18 +118,20 @@ expl = analyze(input, analyzer; layerwise_relevances=true)
118
118
expl. extras. layerwise_relevances
119
119
120
120
# ## [Performance tips](@id docs-lrp-performance)
121
+ # ### Using LRP with a GPU
122
+ # Like all other analyzers, LRP can be used on GPUs.
123
+ # Follow the instructions on [*GPU support*](@ref gpu-docs).
124
+ #
121
125
# ### Using LRP without a GPU
122
- # Since ExplainableAI.jl's LRP implementation makes use of
123
- # [Tullio.jl](https://github.com/mcabbott/Tullio.jl),
124
- # analysis can be accelerated by loading either
125
- # - a package from the [JuliaGPU](https://juliagpu.org) ecosystem,
126
- # e.g. [CUDA.jl](https://github.com/JuliaGPU/CUDA.jl), if a GPU is available
127
- # - [LoopVectorization.jl](https://github.com/JuliaSIMD/LoopVectorization.jl)
128
- # if only a CPU is available.
126
+ # Using Julia's package extension mechanism,
127
+ # ExplainableAI.jl's LRP implementation can optionally make use of
128
+ # [Tullio.jl](https://github.com/mcabbott/Tullio.jl) and
129
+ # [LoopVectorization.jl](https://github.com/JuliaSIMD/LoopVectorization.jl)
130
+ # for faster LRP rules on dense layers.
129
131
#
130
- # This only requires loading the LoopVectorization.jl package before ExplainableAI.jl:
132
+ # This only requires loading the packages before loading ExplainableAI.jl:
131
133
# ```julia
132
- # using LoopVectorization
134
+ # using LoopVectorization, Tullio
133
135
# using ExplainableAI
134
136
# ```
135
137
#
0 commit comments