Skip to content

Commit 3fbbafe

Browse files
Fix missing docs, feature_importance input type (#26)
1 parent 09c16b3 commit 3fbbafe

File tree

2 files changed

+8
-8
lines changed

2 files changed

+8
-8
lines changed

docs/src/wrapper.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -7,9 +7,9 @@ Pool
77
CatBoost.CatBoostClassifier
88
CatBoost.CatBoostRegressor
99
cv
10-
to_catboost
11-
to_pandas
10+
CatBoost.to_catboost
11+
CatBoost.to_pandas
1212
pandas_to_tbl
13-
feature_importance
13+
CatBoost.feature_importance
1414
load_dataset
1515
```

src/wrapper.jl

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -39,9 +39,9 @@ cv(pool::Py; kwargs...) = pandas_to_tbl(catboost.cv(pool; kwargs...))
3939
#####
4040

4141
"""
42-
to_catboost(arg)
42+
CatBoost.to_catboost(arg)
4343
44-
`to_catboost` is called on each argument passed to [`fit`](@ref), [`predict`](@ref), [`predict_proba`](@ref), and [`cv`](@ref)
44+
`CatBoost.to_catboost` is called on each argument passed to [`fit`](@ref), [`predict`](@ref), [`predict_proba`](@ref), and [`cv`](@ref)
4545
to allow customization of the conversion of Julia types to python types.
4646
4747
By default, `to_catboost` simply checks if the argument satisfies `Tables.istable(arg)`, and if so, it outputs
@@ -55,7 +55,7 @@ to_catboost(arg) = Tables.istable(arg) ? to_pandas(arg) : arg
5555
all_to_catboost(args) = (to_catboost(arg) for arg in args)
5656

5757
"""
58-
to_pandas(X)
58+
CatBoost.to_pandas(X)
5959
6060
Convert a table/array to a pandas dataframe
6161
"""
@@ -83,11 +83,11 @@ end
8383
#####
8484

8585
"""
86-
feature_importance(py_model)
86+
CatBoost.feature_importance(py_model::Py)
8787
8888
Generate a Vector{Pair{Symbol, Float64}} of feature importances
8989
"""
90-
function feature_importance(py_model)
90+
function feature_importance(py_model::Py)
9191
py_df_importance = pandas.DataFrame()
9292
py_df_importance["name"] = py_model.feature_names_
9393
py_df_importance["importance"] = py_model.feature_importances_

0 commit comments

Comments
 (0)