|
36 | 36 | UnivariateFinite(supp, probs, pool=missing, augment=true);
|
37 | 37 |
|
38 | 38 | # dimension mismatches:
|
39 |
| - badprobs = rand(40, 3) |
| 39 | + badprobs = rand(rng, 40, 3) |
40 | 40 | @test_throws(CategoricalDistributions.err_dim(supp, badprobs),
|
41 | 41 | UnivariateFinite(supp, badprobs, pool=missing))
|
42 | 42 |
|
|
60 | 60 | probs = probs ./ sum(probs)
|
61 | 61 | u = UnivariateFinite(probs, pool=missing);
|
62 | 62 | @test u isa UnivariateFinite
|
63 |
| - probs = rand(10, 2) |
| 63 | + probs = rand(rng, 10, 2) |
64 | 64 | probs = probs ./ sum(probs, dims=2)
|
65 | 65 | u = UnivariateFinite(probs, pool=missing);
|
66 | 66 | @test u.scitype == Multiclass{2}
|
|
73 | 73 |
|
74 | 74 | v = categorical(1:3)
|
75 | 75 | @test_logs((:warn, r"Ignoring"),
|
76 |
| - UnivariateFinite(v[1:2], rand(3), augment=true, pool=missing)); |
| 76 | + UnivariateFinite(v[1:2], rand(rng, 3), |
| 77 | + augment=true, pool=missing)); |
77 | 78 | @test_logs((:warn, r"Ignoring"),
|
78 |
| - UnivariateFinite(v[1:2], rand(3), augment=true, ordered=true)); |
| 79 | + UnivariateFinite(v[1:2], rand(rng, 3), |
| 80 | + augment=true, ordered=true)); |
79 | 81 |
|
80 | 82 | # using `UnivariateFiniteArray` as a constructor just falls back
|
81 | 83 | # to `UnivariateFinite` constructor:
|
|
0 commit comments