|
49 | 49 | u = UnivariateFinite(probs, pool=missing)
|
50 | 50 | @test u isa UnivariateFinite
|
51 | 51 | @test pdf(u, "class_1") == probs[1]
|
52 |
| - probs = rand(10, 2) |
| 52 | + probs = rand(rng, 10, 2) |
53 | 53 | probs = probs ./ sum(probs, dims=2)
|
54 | 54 | u = UnivariateFinite(probs, pool=missing)
|
55 | 55 | @test length(u) == 10
|
|
66 | 66 |
|
67 | 67 | v = categorical(1:3)
|
68 | 68 | @test_logs((:warn, r"Ignoring"),
|
69 |
| - UnivariateFinite(v[1:2], rand(3), augment=true, pool=missing)) |
| 69 | + UnivariateFinite(v[1:2], rand(rng, 3), |
| 70 | + augment=true, pool=missing)) |
70 | 71 | @test_logs((:warn, r"Ignoring"),
|
71 |
| - UnivariateFinite(v[1:2], rand(3), augment=true, ordered=true)) |
| 72 | + UnivariateFinite(v[1:2], rand(rng, 3), |
| 73 | + augment=true, ordered=true)) |
72 | 74 |
|
73 | 75 | end
|
74 | 76 |
|
|
106 | 108 | end
|
107 | 109 |
|
108 | 110 | n = 10
|
109 |
| -P = rand(n); |
| 111 | +P = rand(rng, n); |
110 | 112 | all_classes = categorical(["no", "yes"], ordered=true)
|
111 | 113 | u = UnivariateFinite(all_classes, P, augment=true) #uni_fin_arr
|
112 | 114 |
|
|
143 | 145 |
|
144 | 146 | # check unseen probablities are a zero *array*:
|
145 | 147 | v = categorical(1:4)
|
146 |
| - probs = rand(3) |
| 148 | + probs = rand(rng, 3) |
147 | 149 | u2 = UnivariateFinite(v[1:2], probs, augment=true)
|
148 | 150 | @test pdf.(u2, v[3]) == zeros(3)
|
149 | 151 | @test isequal(logpdf.(u2, v[3]), log.(zeros(3)))
|
|
152 | 154 | _skip(v) = collect(skipmissing(v))
|
153 | 155 |
|
154 | 156 | @testset "broadcasting: pdf.(uni_fin_arr, array_same_shape) and logpdf.(uni_fin_arr, array_same_shape)" begin
|
155 |
| - v0 = categorical(rand(string.(classes(u)), n)) |
| 157 | + v0 = categorical(rand(rng, string.(classes(u)), n)) |
156 | 158 | vm = vcat(v0[1:end-1], [missing, ])
|
157 | 159 | for v in [v0, vm]
|
158 | 160 | @test _skip(broadcast(pdf, u, v)) ==
|
|
202 | 204 |
|
203 | 205 | # ordered:
|
204 | 206 | v = categorical(["no", "yes", "maybe", "unseen"])
|
205 |
| - u1 = UnivariateFinite([v[1], v[2]], rand(5), augment=true) |
206 |
| - u2 = UnivariateFinite([v[3], v[2]], rand(6), augment=true) |
| 207 | + u1 = UnivariateFinite([v[1], v[2]], rand(rng, 5), augment=true) |
| 208 | + u2 = UnivariateFinite([v[3], v[2]], rand(rng, 6), augment=true) |
207 | 209 | us = (u1, u2)
|
208 | 210 | u = cat(us..., dims=1)
|
209 | 211 | @test length(u) == length(u1) + length(u2)
|
|
222 | 224 |
|
223 | 225 | # unordered:
|
224 | 226 | v = categorical(["no", "yes", "maybe", "unseen"], ordered=true)
|
225 |
| - u1 = UnivariateFinite([v[1], v[2]], rand(5), augment=true) |
226 |
| - u2 = UnivariateFinite([v[3], v[2]], rand(6), augment=true) |
| 227 | + u1 = UnivariateFinite([v[1], v[2]], rand(rng, 5), augment=true) |
| 228 | + u2 = UnivariateFinite([v[3], v[2]], rand(rng, 6), augment=true) |
227 | 229 | us = (u1, u2)
|
228 | 230 | u = cat(us..., dims=1)
|
229 | 231 | @test length(u) == length(u1) + length(u2)
|
|
252 | 254 | v1 = categorical(1:2, ordered=true)
|
253 | 255 | v2 = categorical(v1, ordered=true)
|
254 | 256 | levels!(v2, levels(v2) |> reverse )
|
255 |
| - probs = rand(3) |
| 257 | + probs = rand(rng, 3) |
256 | 258 | u1 = UnivariateFinite(v1, probs, augment=true)
|
257 | 259 | u2 = UnivariateFinite(v2, probs, augment=true)
|
258 | 260 | @test_throws DomainError vcat(u1, u2)
|
|
267 | 269 |
|
268 | 270 | @testset "classes" begin
|
269 | 271 | v = categorical(collect("abca"), ordered=true)
|
270 |
| - u1 = UnivariateFinite([v[1], v[2]], rand(5), augment=true) |
| 272 | + u1 = UnivariateFinite([v[1], v[2]], rand(rng, 5), augment=true) |
271 | 273 | @test classes(u1) == collect("abc")
|
272 | 274 | u2 = [missing, u1...]
|
273 | 275 | @test classes(u2) == collect("abc")
|
|
0 commit comments