@@ -47,17 +47,17 @@ It recursively removes features, training a base model on the remaining features
47
47
evaluating their importance until the desired number of features is selected.
48
48
49
49
Construct an instance with default hyper-parameters using the syntax
50
- `model = RecursiveFeatureElimination(model=...)`. Provide keyword arguments to override
50
+ `rfe_model = RecursiveFeatureElimination(model=...)`. Provide keyword arguments to override
51
51
hyper-parameter defaults.
52
52
53
53
# Training data
54
- In MLJ or MLJBase, bind an instance `model ` to data with
54
+ In MLJ or MLJBase, bind an instance `rfe_model ` to data with
55
55
56
- mach = machine(model , X, y)
56
+ mach = machine(rfe_model , X, y)
57
57
58
58
OR, if the base model supports weights, as
59
59
60
- mach = machine(model , X, y, w)
60
+ mach = machine(rfe_model , X, y, w)
61
61
62
62
Here:
63
63
387
387
# # TRAINING LOSSES SUPPORT
388
388
function MMI. training_losses (model:: RFE , rfe_report)
389
389
return MMI. training_losses (model. model, rfe_report. model_report)
390
- end
390
+ end
391
+
392
+ # # Pkg Traits
393
+ MMI. metadata_pkg .(
394
+ (
395
+ DeterministicRecursiveFeatureElimination,
396
+ ProbabilisticRecursiveFeatureElimination,
397
+ ),
398
+ package_name = " FeatureSelection" ,
399
+ package_uuid = " 33837fe5-dbff-4c9e-8c2f-c5612fe2b8b6" ,
400
+ package_url = " https://github.com/JuliaAI/FeatureSelection.jl" ,
401
+ is_pure_julia = true ,
402
+ package_license = " MIT"
403
+ )
0 commit comments