@@ -61,8 +61,8 @@ function fit end
61
61
update(model, data, param_replacements...; verbosity=1)
62
62
63
63
Return an updated version of the `model` object returned by a previous [`fit`](@ref) or
64
- `update` call, but with the specified hyperparameter replacements, in the form `p1 =>
65
- value1, p2 => value2, ...`.
64
+ `update` call, but with the specified hyperparameter replacements, in the form `: p1 =>
65
+ value1, : p2 => value2, ...`.
66
66
67
67
```julia
68
68
learner = MyForest(ntrees=100)
@@ -105,7 +105,7 @@ function update end
105
105
106
106
Return an updated version of the `model` object returned by a previous [`fit`](@ref) or
107
107
`update` call given the new observations present in `new_data`. One may additionally
108
- specify hyperparameter replacements in the form `p1 => value1, p2 => value2, ...`.
108
+ specify hyperparameter replacements in the form `: p1 => value1, : p2 => value2, ...`.
109
109
110
110
```julia-repl
111
111
learner = MyNeuralNetwork(epochs=10, learning_rate => 0.01)
@@ -145,7 +145,7 @@ function update_observations end
145
145
146
146
Return an updated version of the `model` object returned by a previous [`fit`](@ref) or
147
147
`update` call given the new features encapsulated in `new_data`. One may additionally
148
- specify hyperparameter replacements in the form `p1 => value1, p2 => value2, ...`.
148
+ specify hyperparameter replacements in the form `: p1 => value1, : p2 => value2, ...`.
149
149
150
150
When following the call `fit(learner, data)`, the `update` call is semantically
151
151
equivalent to retraining ab initio using a concatenation of `data` and `new_data`,
0 commit comments