You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
|[`LearnAPI.constructor`](@ref)`(learner)`| constructor for generating new or modified versions of `learner`| (no fallback) |`RidgeRegressor`|
19
19
|[`LearnAPI.functions`](@ref)`(learner)`| functions you can apply to `learner` or associated model (traits excluded) |`()`|`(:fit, :predict, :LearnAPI.strip, :(LearnAPI.learner), :obs)`|
20
-
|[`LearnAPI.kinds_of_proxy`](@ref)`(learner)`| instances `kind` of `KindOfProxy` for which an implementation of `LearnAPI.predict(learner, kind, ...)` is guaranteed. |`()`|`(Distribution(), Interval())`|
21
-
|[`LearnAPI.tags`](@ref)`(learner)`| lists one or more suggestive learner tags from `LearnAPI.tags()`|`()`| (:regression, :probabilistic) |
22
-
|[`LearnAPI.is_pure_julia`](@ref)`(learner)`|`true` if implementation is 100% Julia code |`false`|`true`|
23
-
|[`LearnAPI.pkg_name`](@ref)`(learner)`| name of package providing core code (may be different from package providing LearnAPI.jl implementation) |`"unknown"`|`"DecisionTree"`|
24
-
|[`LearnAPI.pkg_license`](@ref)`(learner)`| name of license of package providing core code |`"unknown"`|`"MIT"`|
25
-
|[`LearnAPI.doc_url`](@ref)`(learner)`| url providing documentation of the core code |`"unknown"`|`"https://en.wikipedia.org/wiki/Decision_tree_learning"`|
26
-
|[`LearnAPI.load_path`](@ref)`(learner)`| string locating name returned by `LearnAPI.constructor(learner)`, beginning with a package name | "unknown"` |`FastTrees.LearnAPI.DecisionTreeClassifier`|
27
-
|[`LearnAPI.is_composite`](@ref)`(learner)`|`true` if one or more properties of `learner` may be a learner|`false`|`true`|
28
-
|[`LearnAPI.human_name`](@ref)`(learner)`| human name for the learner; should be a noun | type name with spaces | "elastic net regressor" |
29
-
|[`LearnAPI.iteration_parameter`](@ref)`(learner)`| symbolic name of an iteration parameter |`nothing`|:epochs|
30
-
|[`LearnAPI.data_interface`](@ref)`(learner)`| Interface implemented by objects returned by [`obs`](@ref)|`Base.HasLength()` (supports `MLUtils.getobs/numobs`) |`Base.SizeUnknown()` (supports `iterate`) |
31
-
|[`LearnAPI.fit_observation_scitype`](@ref)`(learner)`| upper bound on `scitype(observation)` for `observation` in `data` ensuring `fit(learner, data)` works |`Union{}`|`Tuple{AbstractVector{Continuous}, Continuous}`|
32
-
|[`LearnAPI.target_observation_scitype`](@ref)`(learner)`| upper bound on the scitype of each observation of the targget |`Any`|`Continuous`|
33
-
|[`LearnAPI.is_static`](@ref)`(learner)`|`true` if `fit` consumes no data |`false`|`true`|
20
+
|[`LearnAPI.kinds_of_proxy`](@ref)`(learner)`| instances `kind` of `KindOfProxy` for which an implementation of `LearnAPI.predict(learner, kind, ...)` is guaranteed. |`()`|`(Distribution(), Interval())`|
21
+
|[`LearnAPI.tags`](@ref)`(learner)`| lists one or more suggestive learner tags from `LearnAPI.tags()`|`()`| (:regression, :probabilistic) |
22
+
|[`LearnAPI.is_pure_julia`](@ref)`(learner)`|`true` if implementation is 100% Julia code |`false`|`true`|
23
+
|[`LearnAPI.pkg_name`](@ref)`(learner)`| name of package providing core code (may be different from package providing LearnAPI.jl implementation) |`"unknown"`|`"DecisionTree"`|
24
+
|[`LearnAPI.pkg_license`](@ref)`(learner)`| name of license of package providing core code |`"unknown"`|`"MIT"`|
25
+
|[`LearnAPI.doc_url`](@ref)`(learner)`| url providing documentation of the core code |`"unknown"`|`"https://en.wikipedia.org/wiki/Decision_tree_learning"`|
26
+
|[`LearnAPI.load_path`](@ref)`(learner)`| string locating name returned by `LearnAPI.constructor(learner)`, beginning with a package name |`"unknown"`|`FastTrees.LearnAPI.DecisionTreeClassifier`|
27
+
|[`LearnAPI.nonlearners`](@ref)`(learner)`|properties *not* corresponding to other learners | all properties|`(:K, :leafsize, :metric,)`|
28
+
|[`LearnAPI.human_name`](@ref)`(learner)`| human name for the learner; should be a noun | type name with spaces | "elastic net regressor" |
29
+
|[`LearnAPI.iteration_parameter`](@ref)`(learner)`| symbolic name of an iteration parameter |`nothing`|:epochs|
30
+
|[`LearnAPI.data_interface`](@ref)`(learner)`| Interface implemented by objects returned by [`obs`](@ref)|`Base.HasLength()` (supports `MLUtils.getobs/numobs`) |`Base.SizeUnknown()` (supports `iterate`)|
31
+
|[`LearnAPI.fit_observation_scitype`](@ref)`(learner)`| upper bound on `scitype(observation)` for `observation` in `data` ensuring `fit(learner, data)` works |`Union{}`|`Tuple{AbstractVector{Continuous}, Continuous}`|
32
+
|[`LearnAPI.target_observation_scitype`](@ref)`(learner)`| upper bound on the scitype of each observation of the targget |`Any`|`Continuous`|
33
+
|[`LearnAPI.is_static`](@ref)`(learner)`|`true` if `fit` consumes no data |`false`|`true`|
34
34
35
35
### Derived Traits
36
36
37
37
The following are provided for convenience but should not be overloaded by new learners:
0 commit comments