@@ -62,8 +62,8 @@ f = @formula(t ~ c + a)
6262 @test o. names == [:x1 , :x2 ]
6363 @test o. target == repeat ([1 , 2 , 1 ], n)
6464 @test eltype (o. target) == Int
65- @test o. classes_seen == CA. levels (y)[1 : 2 ]
66- @test o. classes_seen isa CA. CategoricalArray
65+ @test o. levels_seen == CA. levels (y)[1 : 2 ]
66+ @test o. levels_seen isa CA. CategoricalArray
6767 yy = o. decoder .(o. target)
6868 @test yy == y
6969 @test yy isa CA. CategoricalVector
8787 @test o. names == [:c , :a ]
8888 @test o. target == repeat ([1 , 2 , 1 ], n)
8989 @test eltype (o. target) == Int
90- @test o. classes_seen == CA. levels (y)[1 : 2 ]
91- @test o. classes_seen isa CA. CategoricalArray
90+ @test o. levels_seen == CA. levels (y)[1 : 2 ]
91+ @test o. levels_seen isa CA. CategoricalArray
9292 yy = o. decoder .(o. target)
9393 @test yy == y
9494 @test yy isa CA. CategoricalVector
112112 @test o. features == x
113113 @test o. target == repeat ([1 , 2 , 1 ], n)
114114 @test eltype (o. target) == Int
115- @test o. classes_seen == CA. levels (y)[1 : 2 ]
116- @test o. classes_seen isa CA. CategoricalArray
115+ @test o. levels_seen == CA. levels (y)[1 : 2 ]
116+ @test o. levels_seen isa CA. CategoricalArray
117117 yy = o. decoder .(o. target)
118118 @test yy == y
119119 @test yy isa CA. CategoricalVector
138138 @test o. names == [:c , :a ]
139139 @test o. target == repeat ([1 , 2 , 1 ], n)
140140 @test eltype (o. target) == Int
141- @test o. classes_seen == CA. levels (y)[1 : 2 ]
142- @test o. classes_seen isa CA. CategoricalArray
141+ @test o. levels_seen == CA. levels (y)[1 : 2 ]
142+ @test o. levels_seen isa CA. CategoricalArray
143143 yy = o. decoder .(o. target)
144144 @test yy == y
145145 @test yy isa CA. CategoricalVector
163163 @test o. names == [:c , :a ]
164164 @test o. target == repeat ([1 , 2 , 1 ], n)
165165 @test eltype (o. target) == Int
166- @test o. classes_seen == CA. levels (y)[1 : 2 ]
167- @test o. classes_seen isa CA. CategoricalArray
166+ @test o. levels_seen == CA. levels (y)[1 : 2 ]
167+ @test o. levels_seen isa CA. CategoricalArray
168168 yy = o. decoder .(o. target)
169169 @test yy == y
170170 @test yy isa CA. CategoricalVector
@@ -223,7 +223,7 @@ struct ConstantClassifierFitted
223223 learner:: ConstantClassifier
224224 probabilities
225225 names:: Vector{Symbol}
226- classes_seen
226+ levels_seen
227227 codes_seen
228228 decoder
229229end
@@ -256,7 +256,7 @@ function LearnAPI.fit(learner::ConstantClassifier, observations::Obs; verbosity=
256256
257257 y = observations. target # integer "codes"
258258 names = observations. names
259- classes_seen = observations. classes_seen
259+ levels_seen = observations. levels_seen
260260 codes_seen = sort (unique (y))
261261 decoder = observations. decoder
262262
@@ -268,7 +268,7 @@ function LearnAPI.fit(learner::ConstantClassifier, observations::Obs; verbosity=
268268 learner,
269269 probabilities,
270270 names,
271- classes_seen ,
271+ levels_seen ,
272272 codes_seen,
273273 decoder,
274274 )
@@ -290,7 +290,7 @@ function LearnAPI.predict(model::ConstantClassifierFitted, ::Distribution, obser
290290 probs = model. probabilities
291291 # repeat vertically to get rows of a matrix:
292292 probs_matrix = reshape (repeat (probs, n), (length (probs), n))'
293- return CategoricalDistributions. UnivariateFinite (model. classes_seen , probs_matrix)
293+ return CategoricalDistributions. UnivariateFinite (model. levels_seen , probs_matrix)
294294end
295295LearnAPI. predict (model:: ConstantClassifierFitted , :: Distribution , Xnew) =
296296 predict (model, Distribution (), obs (model, Xnew))
0 commit comments