|
40 | 40 | { |
41 | 41 | "data": { |
42 | 42 | "text/plain": [ |
43 | | - "((Column1 = [0.9695150609084499, 0.012898301755861596, 0.7555027304121053, 0.3467415729179013, 0.35969402837473463, 0.2601876747805505, 0.9522580699968279, 0.06304475092339623, 0.18909001622655808, 0.19934942931986965 … 0.021532597906190776, 0.8482825697641306, 0.10773487816863903, 0.32189982199036116, 0.12662208474317038, 0.28529465447429614, 0.2907506630258835, 0.36872799387588473, 0.061489791166806085, 0.45645058368583713], Column2 = [0.06546916714160167, 0.7243956502957003, 0.5183099801474415, 0.7555562860508294, 0.11226218114407538, 0.9135150277876691, 0.8739421974558176, 0.2268482788660101, 0.580604436651146, 0.4142252330250549 … 0.6517425913240111, 0.01713263102740481, 0.7175499403837856, 0.7362894157420817, 0.24893665902538054, 0.41499951381631595, 0.2159527717429719, 0.8966879835264249, 0.87252430655793, 0.41461921031276117], Column3 = [0.5939320702328891, 0.19329886972497456, 0.04656947038518311, 0.22095698685781184, 0.678807659662497, 0.12720198818430306, 0.6795750371448686, 0.9314917999820301, 0.22920734893984274, 0.5148148980955375 … 0.55049773593343, 0.038576459283091946, 0.27765727942909757, 0.2753072414696357, 0.8823620780359746, 0.44831794170895023, 0.9073846432163745, 0.4648550947905655, 0.311984726769037, 0.25829997798611304], Column4 = [0.12253944650540982, 0.8259140842535423, 0.4034477332184384, 0.5279399406265695, 0.5579944087437719, 0.24650366028608328, 0.6874897000162434, 0.23391406844015605, 0.5641254897013973, 0.6250622796341656 … 0.21708181942178983, 0.35224683896541464, 0.8444113778983325, 0.4547214584884428, 0.13508852017592232, 0.9510137735662383, 0.5723463533029658, 0.626377972762265, 0.7854013810594317, 0.15394691114473347], Column5 = [0.47958743625921163, 0.45779753417165514, 0.6367059235247621, 0.8601116026079643, 0.3334020182022719, 0.41593698717526373, 0.13208968772625174, 0.16951044109747648, 0.8137887839507706, 0.4429229861115882 … 0.01308976221980429, 0.48597926808091163, 0.20768781798463476, 0.30045611276046247, 0.15759293576302558, 0.975806377881983, 0.19451065500145392, 0.9638103356367584, 0.3594043445295293, 0.7792867217495332], Column6 = [3.0, 3.0, 1.0, 3.0, 1.0, 2.0, 3.0, 2.0, 3.0, 3.0 … 3.0, 2.0, 1.0, 2.0, 1.0, 2.0, 2.0, 3.0, 3.0, 1.0], Column7 = [2.0, 2.0, 2.0, 2.0, 1.0, 2.0, 2.0, 2.0, 1.0, 1.0 … 2.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 1.0, 1.0]), CategoricalArrays.CategoricalValue{Int64, UInt32}[0, 0, 0, 0, 0, 0, 0, 0, 1, 0 … 0, 0, 1, 0, 1, 0, 0, 0, 0, 0])" |
| 43 | + "((Column1 = [0.564, 0.862, 0.793, 0.505, 0.683, 0.699, 0.545, 0.693, 0.95, 0.44 … 0.423, 0.632, 0.922, 0.592, 0.944, 0.517, 0.785, 0.579, 0.725, 0.711], Column2 = [0.42, 0.715, 0.358, -0.009, 0.228, 0.725, 0.786, 0.52, 0.646, 0.582 … 0.65, 0.633, 0.263, 0.141, 0.472, 0.45, -0.019, 0.593, 0.777, 0.877], Column3 = [0.638, 0.719, 0.716, 0.604, 0.616, 0.784, 0.697, 0.711, 0.878, 0.739 … 0.722, 0.672, 0.879, 0.598, 0.879, 0.669, 0.728, 0.768, 0.736, 0.725], Column4 = [0.29, 0.164, 0.164, 0.262, 0.246, 0.211, 0.155, 0.03, 1.842, 0.324 … 0.192, 0.143, 1.323, 0.251, 1.084, 0.165, 0.138, 0.176, 0.155, 0.217], Column5 = [0.605, 0.287, 0.565, 0.121, 0.752, 0.317, 0.165, 0.497, 0.361, 0.293 … 0.726, 0.781, 0.694, 0.728, 0.692, 0.351, 0.089, 0.478, 0.067, -0.19], Column6 = [2.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 2.0, 2.0, 3.0 … 1.0, 3.0, 2.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0], Column7 = [2.0, 2.0, 1.0, 2.0, 1.0, 1.0, 2.0, 2.0, 1.0, 2.0 … 1.0, 2.0, 1.0, 1.0, 1.0, 2.0, 1.0, 1.0, 1.0, 1.0]), CategoricalArrays.CategoricalValue{Int64, UInt32}[0, 0, 0, 0, 0, 0, 0, 0, 1, 0 … 0, 0, 1, 0, 1, 0, 0, 0, 0, 0])" |
44 | 44 | ] |
45 | 45 | }, |
46 | 46 | "metadata": {}, |
47 | 47 | "output_type": "display_data" |
48 | 48 | } |
49 | 49 | ], |
50 | 50 | "source": [ |
51 | | - "X, y = generate_imbalanced_data(100, 5; cat_feats_num_vals = [3, 2], \n", |
52 | | - " probs = [0.9, 0.1], \n", |
| 51 | + "X, y = generate_imbalanced_data(100, 5; num_vals_per_category = [3, 2], \n", |
| 52 | + " class_probs = [0.9, 0.1], \n", |
53 | 53 | " type = \"ColTable\", \n", |
54 | 54 | " rng=42)" |
55 | 55 | ] |
|
73 | 73 | "WARNING: using StaticArrays.setindex in module FiniteDiff conflicts with an existing identifier.\n" |
74 | 74 | ] |
75 | 75 | }, |
| 76 | + { |
| 77 | + "name": "stderr", |
| 78 | + "output_type": "stream", |
| 79 | + "text": [ |
| 80 | + "┌ Warning: The call to compilecache failed to create a usable precompiled cache file for MLJLinearModels [6ee0df7b-362f-4a72-a706-9e79364fb692]\n", |
| 81 | + "│ exception = ErrorException(\"Required dependency Optim [429524aa-4258-5aef-a3af-852621145aeb] failed to load from a cache file.\")\n", |
| 82 | + "└ @ Base loading.jl:1349\n" |
| 83 | + ] |
| 84 | + }, |
76 | 85 | { |
77 | 86 | "data": { |
78 | 87 | "text/plain": [ |
|
108 | 117 | }, |
109 | 118 | { |
110 | 119 | "cell_type": "code", |
111 | | - "execution_count": 10, |
| 120 | + "execution_count": 4, |
112 | 121 | "metadata": {}, |
113 | 122 | "outputs": [ |
114 | 123 | { |
|
127 | 136 | "data": { |
128 | 137 | "text/plain": [ |
129 | 138 | "100-element CategoricalDistributions.UnivariateFiniteVector{Multiclass{2}, Int64, UInt32, Float64}:\n", |
130 | | - " UnivariateFinite{Multiclass{2}}(0=>0.928, 1=>0.0722)\n", |
131 | | - " UnivariateFinite{Multiclass{2}}(0=>0.845, 1=>0.155)\n", |
132 | | - " UnivariateFinite{Multiclass{2}}(0=>0.749, 1=>0.251)\n", |
133 | | - " UnivariateFinite{Multiclass{2}}(0=>0.902, 1=>0.0977)\n", |
134 | | - " UnivariateFinite{Multiclass{2}}(0=>0.804, 1=>0.196)\n", |
135 | | - " UnivariateFinite{Multiclass{2}}(0=>0.864, 1=>0.136)\n", |
136 | | - " UnivariateFinite{Multiclass{2}}(0=>0.851, 1=>0.149)\n", |
137 | | - " UnivariateFinite{Multiclass{2}}(0=>0.954, 1=>0.0458)\n", |
138 | | - " UnivariateFinite{Multiclass{2}}(0=>0.853, 1=>0.147)\n", |
139 | | - " UnivariateFinite{Multiclass{2}}(0=>0.86, 1=>0.14)\n", |
| 139 | + " UnivariateFinite{Multiclass{2}}(0=>1.0, 1=>0.0)\n", |
| 140 | + " UnivariateFinite{Multiclass{2}}(0=>1.0, 1=>0.0)\n", |
| 141 | + " UnivariateFinite{Multiclass{2}}(0=>1.0, 1=>0.0)\n", |
| 142 | + " UnivariateFinite{Multiclass{2}}(0=>1.0, 1=>0.0)\n", |
| 143 | + " UnivariateFinite{Multiclass{2}}(0=>1.0, 1=>0.0)\n", |
| 144 | + " UnivariateFinite{Multiclass{2}}(0=>1.0, 1=>0.0)\n", |
| 145 | + " UnivariateFinite{Multiclass{2}}(0=>1.0, 1=>0.0)\n", |
| 146 | + " UnivariateFinite{Multiclass{2}}(0=>1.0, 1=>0.0)\n", |
| 147 | + " UnivariateFinite{Multiclass{2}}(0=>0.0, 1=>1.0)\n", |
| 148 | + " UnivariateFinite{Multiclass{2}}(0=>1.0, 1=>0.0)\n", |
140 | 149 | " ⋮\n", |
141 | | - " UnivariateFinite{Multiclass{2}}(0=>0.671, 1=>0.329)\n", |
142 | | - " UnivariateFinite{Multiclass{2}}(0=>0.73, 1=>0.27)\n", |
143 | | - " UnivariateFinite{Multiclass{2}}(0=>0.843, 1=>0.157)\n", |
144 | | - " UnivariateFinite{Multiclass{2}}(0=>0.941, 1=>0.0594)\n", |
145 | | - " UnivariateFinite{Multiclass{2}}(0=>0.872, 1=>0.128)\n", |
146 | | - " UnivariateFinite{Multiclass{2}}(0=>0.92, 1=>0.0797)\n", |
147 | | - " UnivariateFinite{Multiclass{2}}(0=>0.929, 1=>0.0714)\n", |
148 | | - " UnivariateFinite{Multiclass{2}}(0=>0.791, 1=>0.209)\n", |
149 | | - " UnivariateFinite{Multiclass{2}}(0=>0.827, 1=>0.173)" |
| 150 | + " UnivariateFinite{Multiclass{2}}(0=>1.0, 1=>0.0)\n", |
| 151 | + " UnivariateFinite{Multiclass{2}}(0=>0.0, 1=>1.0)\n", |
| 152 | + " UnivariateFinite{Multiclass{2}}(0=>1.0, 1=>0.0)\n", |
| 153 | + " UnivariateFinite{Multiclass{2}}(0=>0.0, 1=>1.0)\n", |
| 154 | + " UnivariateFinite{Multiclass{2}}(0=>1.0, 1=>0.0)\n", |
| 155 | + " UnivariateFinite{Multiclass{2}}(0=>1.0, 1=>0.0)\n", |
| 156 | + " UnivariateFinite{Multiclass{2}}(0=>1.0, 1=>0.0)\n", |
| 157 | + " UnivariateFinite{Multiclass{2}}(0=>1.0, 1=>0.0)\n", |
| 158 | + " UnivariateFinite{Multiclass{2}}(0=>1.0, 1=>0.0)" |
150 | 159 | ] |
151 | 160 | }, |
152 | 161 | "metadata": {}, |
|
0 commit comments