@@ -38,7 +38,6 @@ MMI.@mlj_model mutable struct DecisionTreeClassifier <: MMI.Probabilistic
3838 n_subfeatures:: Int = 0 :: (_ ≥ -1)
3939 post_prune:: Bool = false
4040 merge_purity_threshold:: Float64 = 1.0 :: (_ ≤ 1)
41- pdf_smoothing:: Float64 = 0.0 :: (0 ≤ _ ≤ 1)
4241 display_depth:: Int = 5 :: (_ ≥ 1)
4342 rng:: Union{AbstractRNG,Integer} = GLOBAL_RNG
4443end
@@ -103,10 +102,9 @@ function MMI.predict(m::DecisionTreeClassifier, fitresult, Xnew)
103102 tree, classes_seen, integers_seen = fitresult
104103 # retrieve the predicted scores
105104 scores = DT. apply_tree_proba (tree, Xmatrix, integers_seen)
106- # smooth if required
107- sm_scores = smooth (scores, m. pdf_smoothing)
105+
108106 # return vector of UF
109- return MMI. UnivariateFinite (classes_seen, sm_scores )
107+ return MMI. UnivariateFinite (classes_seen, scores )
110108end
111109
112110
@@ -120,7 +118,6 @@ MMI.@mlj_model mutable struct RandomForestClassifier <: MMI.Probabilistic
120118 n_subfeatures:: Int = (- )(1 ):: (_ ≥ -1)
121119 n_trees:: Int = 10 :: (_ ≥ 2)
122120 sampling_fraction:: Float64 = 0.7 :: (0 < _ ≤ 1)
123- pdf_smoothing:: Float64 = 0.0 :: (0 ≤ _ ≤ 1)
124121 rng:: Union{AbstractRNG,Integer} = GLOBAL_RNG
125122end
126123
@@ -151,16 +148,14 @@ function MMI.predict(m::RandomForestClassifier, fitresult, Xnew)
151148 Xmatrix = MMI. matrix (Xnew)
152149 forest, classes_seen, integers_seen = fitresult
153150 scores = DT. apply_forest_proba (forest, Xmatrix, integers_seen)
154- sm_scores = smooth (scores, m. pdf_smoothing)
155- return MMI. UnivariateFinite (classes_seen, sm_scores)
151+ return MMI. UnivariateFinite (classes_seen, scores)
156152end
157153
158154
159155# # ADA BOOST STUMP CLASSIFIER
160156
161157MMI. @mlj_model mutable struct AdaBoostStumpClassifier <: MMI.Probabilistic
162158 n_iter:: Int = 10 :: (_ ≥ 1)
163- pdf_smoothing:: Float64 = 0.0 :: (0 ≤ _ ≤ 1)
164159end
165160
166161function MMI. fit (m:: AdaBoostStumpClassifier , verbosity:: Int , X, y)
@@ -185,8 +180,7 @@ function MMI.predict(m::AdaBoostStumpClassifier, fitresult, Xnew)
185180 stumps, coefs, classes_seen, integers_seen = fitresult
186181 scores = DT. apply_adaboost_stumps_proba (stumps, coefs,
187182 Xmatrix, integers_seen)
188- sm_scores = smooth (scores, m. pdf_smoothing)
189- return MMI. UnivariateFinite (classes_seen, sm_scores)
183+ return MMI. UnivariateFinite (classes_seen, scores)
190184end
191185
192186
@@ -239,7 +233,6 @@ MMI.@mlj_model mutable struct RandomForestRegressor <: MMI.Deterministic
239233 n_subfeatures:: Int = (- )(1 ):: (_ ≥ -1)
240234 n_trees:: Int = 10 :: (_ ≥ 2)
241235 sampling_fraction:: Float64 = 0.7 :: (0 < _ ≤ 1)
242- pdf_smoothing:: Float64 = 0.0 :: (0 ≤ _ ≤ 1)
243236 rng:: Union{AbstractRNG,Integer} = GLOBAL_RNG
244237end
245238
@@ -375,14 +368,6 @@ Train the machine using `fit!(mach, rows=...)`.
375368
376369- `rng=Random.GLOBAL_RNG`: random number generator or seed
377370
378- - `pdf_smoothing=0.0`: threshold for smoothing the predicted scores.
379- Raw leaf-based probabilities are smoothed as follows: If `n` is the
380- number of observed classes, then each class probability is replaced
381- by `pdf_smoothing/n`, if it falls below that ratio, and the
382- resulting vector of probabilities is renormalized. Smoothing is only
383- applied to classes actually observed in training. Unseen classes
384- retain zero-probability predictions.
385-
386371
387372# Operations
388373
@@ -512,9 +497,6 @@ Train the machine with `fit!(mach, rows=...)`.
512497
513498- `rng=Random.GLOBAL_RNG`: random number generator or seed
514499
515- - `pdf_smoothing=0.0`: threshold for smoothing the predicted scores of
516- each tree. See [`DecisionTreeClassifier`](@ref)
517-
518500
519501# Operations
520502
@@ -586,9 +568,6 @@ Train the machine with `fit!(mach, rows=...)`.
586568
587569- `n_iter=10`: number of iterations of AdaBoost
588570
589- - `pdf_smoothing=0.0`: threshold for smoothing the predicted scores.
590- See [`DecisionTreeClassifier`](@ref)
591-
592571
593572# Operations
594573
0 commit comments