Skip to content

Commit c7c065b

Browse files
committed
update docstring
1 parent 3735f6f commit c7c065b

File tree

1 file changed

+30
-2
lines changed

1 file changed

+30
-2
lines changed

src/MLJDecisionTreeInterface.jl

Lines changed: 30 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -456,7 +456,8 @@ Train the machine using `fit!(mach, rows=...)`.
456456
457457
- `display_depth=5`: max depth to show when displaying the tree
458458
459-
- `feature_importance`: method to use for computing feature importances. One of `(:impurity, :split)`
459+
- `feature_importance`: method to use for computing feature importances. One of `(:impurity,
460+
:split)`
460461
461462
- `rng=Random.GLOBAL_RNG`: random number generator or seed
462463
@@ -591,7 +592,8 @@ Train the machine with `fit!(mach, rows=...)`.
591592
592593
- `sampling_fraction=0.7` fraction of samples to train each tree on
593594
594-
- `feature_importance`: method to use for computing feature importances. One of `(:impurity, :split)`
595+
- `feature_importance`: method to use for computing feature importances. One of `(:impurity,
596+
:split)`
595597
596598
- `rng=Random.GLOBAL_RNG`: random number generator or seed
597599
@@ -613,6 +615,11 @@ The fields of `fitted_params(mach)` are:
613615
- `forest`: the `Ensemble` object returned by the core DecisionTree.jl algorithm
614616
615617
618+
# Report
619+
620+
- `features`: the names of the features encountered in training
621+
622+
616623
# Examples
617624
618625
```
@@ -632,6 +639,11 @@ predict_mode(mach, Xnew) # point predictions
632639
pdf.(yhat, "virginica") # probabilities for the "verginica" class
633640
634641
fitted_params(mach).forest # raw `Ensemble` object from DecisionTrees.jl
642+
643+
feature_importances(mach) # `:impurity` feature importances
644+
forest.feature_importance = :split
645+
feature_importance(mach) # `:split` feature importances
646+
635647
```
636648
See also
637649
[DecisionTree.jl](https://github.com/bensadeghi/DecisionTree.jl) and
@@ -692,6 +704,12 @@ The fields of `fitted_params(mach)` are:
692704
693705
- `coefficients`: the stump coefficients (one per stump)
694706
707+
708+
# Report
709+
710+
- `features`: the names of the features encountered in training
711+
712+
695713
```
696714
using MLJ
697715
Booster = @load AdaBoostStumpClassifier pkg=DecisionTree
@@ -781,6 +799,11 @@ The fields of `fitted_params(mach)` are:
781799
DecisionTree.jl algorithm
782800
783801
802+
# Report
803+
804+
- `features`: the names of the features encountered in training
805+
806+
784807
# Examples
785808
786809
```
@@ -864,6 +887,11 @@ The fields of `fitted_params(mach)` are:
864887
- `forest`: the `Ensemble` object returned by the core DecisionTree.jl algorithm
865888
866889
890+
# Report
891+
892+
- `features`: the names of the features encountered in training
893+
894+
867895
# Examples
868896
869897
```

0 commit comments

Comments
 (0)