@@ -325,9 +325,20 @@ MMI.metadata_model(
325325
326326# # DOCUMENT STRINGS
327327
328+ const DOC_CART = " [CART algorithm](https://en.wikipedia.org/wiki/Decision_tree_learning)" *
329+ " , originally published in Breiman, Leo; Friedman, J. H.; Olshen, R. A.; " *
330+ " Stone, C. J. (1984): \" Classification and regression trees\" . *Monterey, " *
331+ " CA: Wadsworth & Brooks/Cole Advanced Books & Software.*"
332+
333+ const DOC_RANDOM_FOREST = " [Random Forest algorithm]" *
334+ " (https://en.wikipedia.org/wiki/Random_forest), originally published in " *
335+ " Breiman, L. (2001): \" Random Forests.\" , *Machine Learning*, vol. 45, pp. 5–32"
336+
328337"""
329338$(MMI. doc_header (DecisionTreeClassifier))
330339
340+ `DecisionTreeClassifier` implements the $DOC_CART .
341+
331342# Training data
332343
333344In MLJ or MLJBase, bind an instance `model` to data with
@@ -338,10 +349,11 @@ where
338349
339350- `X`: any table of input features (eg, a `DataFrame`) whose columns
340351 each have one of the following element scitypes: `Continuous`,
341- `Count`, or `<:OrderedFactor`.
352+ `Count`, or `<:OrderedFactor`; check column scitypes with `schema(X)`
342353
343354- `y`: is the target, which can be any `AbstractVector` whose element
344- scitype is `<:OrderedFactor` or `<:Multiclass`.
355+ scitype is `<:OrderedFactor` or `<:Multiclass`; check the scitype
356+ with `scitype(y)`
345357
346358Train the machine using `fit!(mach, rows=...)`.
347359
@@ -460,6 +472,9 @@ DecisionTreeClassifier
460472"""
461473$(MMI. doc_header (RandomForestClassifier))
462474
475+ `RandomForestClassifier` implements the standard $DOC_RANDOM_FOREST .
476+
477+
463478# Training data
464479
465480In MLJ or MLJBase, bind an instance `model` to data with
@@ -470,10 +485,11 @@ where
470485
471486- `X`: any table of input features (eg, a `DataFrame`) whose columns
472487 each have one of the following element scitypes: `Continuous`,
473- `Count`, or `<:OrderedFactor`.
488+ `Count`, or `<:OrderedFactor`; check column scitypes with `schema(X)`
474489
475490- `y`: the target, which can be any `AbstractVector` whose element
476- scitype is `<:OrderedFactor` or `<:Multiclass`.
491+ scitype is `<:OrderedFactor` or `<:Multiclass`; check the scitype
492+ with `scitype(y)`
477493
478494Train the machine with `fit!(mach, rows=...)`.
479495
@@ -546,6 +562,7 @@ RandomForestClassifier
546562"""
547563$(MMI. doc_header (AdaBoostStumpClassifier))
548564
565+
549566# Training data
550567
551568In MLJ or MLJBase, bind an instance `model` to data with
@@ -556,10 +573,11 @@ where:
556573
557574- `X`: any table of input features (eg, a `DataFrame`) whose columns
558575 each have one of the following element scitypes: `Continuous`,
559- `Count`, or `<:OrderedFactor`.
576+ `Count`, or `<:OrderedFactor`; check column scitypes with `schema(X)`
560577
561578- `y`: the target, which can be any `AbstractVector` whose element
562- scitype is `<:OrderedFactor` or `<:Multiclass`.
579+ scitype is `<:OrderedFactor` or `<:Multiclass`; check the scitype
580+ with `scitype(y)`
563581
564582Train the machine with `fit!(mach, rows=...)`.
565583
@@ -619,6 +637,9 @@ AdaBoostStumpClassifier
619637"""
620638$(MMI. doc_header (DecisionTreeRegressor))
621639
640+ `DecisionTreeRegressor` implements the $DOC_CART .
641+
642+
622643# Training data
623644
624645In MLJ or MLJBase, bind an instance `model` to data with
@@ -629,10 +650,10 @@ where
629650
630651- `X`: any table of input features (eg, a `DataFrame`) whose columns
631652 each have one of the following element scitypes: `Continuous`,
632- `Count`, or `<:OrderedFactor`.
653+ `Count`, or `<:OrderedFactor`; check column scitypes with `schema(X)`
633654
634655- `y`: the target, which can be any `AbstractVector` whose element
635- scitype is `Continuous`.
656+ scitype is `Continuous`; check the scitype with `scitype(y)`
636657
637658Train the machine with `fit!(mach, rows=...)`.
638659
@@ -699,6 +720,9 @@ DecisionTreeRegressor
699720"""
700721$(MMI. doc_header (RandomForestRegressor))
701722
723+ `DecisionTreeRegressor` implements the standard $DOC_RANDOM_FOREST
724+
725+
702726# Training data
703727
704728In MLJ or MLJBase, bind an instance `model` to data with
@@ -709,10 +733,10 @@ where
709733
710734- `X`: any table of input features (eg, a `DataFrame`) whose columns
711735 each have one of the following element scitypes: `Continuous`,
712- `Count`, or `<:OrderedFactor`.
736+ `Count`, or `<:OrderedFactor`; check column scitypes with `schema(X)`
713737
714738- `y`: the target, which can be any `AbstractVector` whose element
715- scitype is `Continuous`.
739+ scitype is `Continuous`; check the scitype with `scitype(y)`
716740
717741Train the machine with `fit!(mach, rows=...)`.
718742
0 commit comments