using DataFrames
using MLJ
import MLJDecisionTreeInterface.DecisionTreeClassifier as Tree
iris = DataFrame(load_iris());
y, X = unpack(iris, ==(:target); rng=123)
tree = Tree()
mach = machine(tree, X, y)
train, test = partition(eachindex(y), 0.7)
fit!(mach, rows=train)
# Returns false
predict(mach, X[test,[3,2,1,4]]) == predict(mach, X[test,[1,2,3,4]])