@@ -16,8 +16,8 @@ fit(::Static, ::Integer, data...) = (nothing, nothing, nothing)
16
16
fit (m:: Supervised , verbosity, X, y, w) = fit (m, verbosity, X, y)
17
17
18
18
# fallback for unsupervised detectors when no "evaluation" labels appear:
19
- fit (m:: Union {AbstractProbabilisticUnsupervisedDetector ,
20
- AbstractDeterministicUnsupervisedDetector },
19
+ fit (m:: Union {ProbabilisticUnsupervisedDetector ,
20
+ DeterministicUnsupervisedDetector },
21
21
verbosity,
22
22
X,
23
23
y) = fit (m, verbosity, X)
@@ -154,27 +154,6 @@ function transform end
154
154
"""
155
155
function inverse_transform end
156
156
157
- """
158
- augmented_transform
159
-
160
- If implemented, the same as `transform`, but with a return value
161
- augmented by the `transform`ation of the training data.
162
-
163
- For example, for if implemented for a `Supervised` model with a
164
- `transform` method, the return value of `transform_transform(model,
165
- fitresult, Xnew)` coincides with
166
-
167
- ```julia
168
- (transform(model, fitresult, X), transform(model, fitresult, Xnew))
169
- ```
170
-
171
- where `(X, y)` was the training data.
172
-
173
- Must be implemented by any `UnsupervisedDetector` or `SupervisedDetector`.
174
-
175
- """
176
- function augmented_transform end
177
-
178
157
# models can optionally overload these for enable serialization in a
179
158
# custom format:
180
159
function save end
@@ -184,4 +163,3 @@ function restore end
184
163
some meta-models may choose to implement the `evaluate` operations
185
164
"""
186
165
function evaluate end
187
-
0 commit comments