Skip to content

Commit 3ac79af

Browse files
committed
update links broken by MLJ move
1 parent 825557d commit 3ac79af

10 files changed

+19
-19
lines changed

README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
A light-weight interface for developers wanting to integrate
44
machine learning models into
5-
[MLJ](https://github.com/alan-turing-institute/MLJ.jl).
5+
[MLJ](https://github.com/JuliaAI/MLJ.jl).
66

77

88
| Linux | Coverage |
@@ -12,8 +12,8 @@ machine learning models into
1212
[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://juliaai.github.io/MLJModelInterface.jl/dev/)
1313

1414

15-
[MLJ](https://alan-turing-institute.github.io/MLJ.jl/dev/) is a framework for evaluating,
15+
[MLJ](https://JuliaAI.github.io/MLJ.jl/dev/) is a framework for evaluating,
1616
combining and optimizing machine learning models in Julia. A third party package wanting
1717
to integrate their machine learning models into MLJ must import the module
1818
`MLJModelInterface` defined in this package, as described in the
19-
[documentation](https://juliaai.github.io/MLJModelInterface.jl/dev/).
19+
[documentation](https://JuliaAI.github.io/MLJModelInterface.jl/dev/).

docs/src/index.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# Adding Models for General Use
22

33
The machine learning tools provided by
4-
[MLJ](https://alan-turing-institute.github.io/MLJ.jl/dev/) can be applied to the models in
4+
[MLJ](https://JuliaAI.github.io/MLJ.jl/dev/) can be applied to the models in
55
any package that imports
66
[MLJModelInterface](https://github.com/JuliaAI/MLJModelInterface.jl) and implements the
77
API defined there, as outlined in this document.
@@ -15,7 +15,7 @@ or by a stand-alone "interface-only" package, using the template
1515
[MLJExampleInterface.jl](https://github.com/JuliaAI/MLJExampleInterface.jl) (see [Where to
1616
place code implementing new models](@ref) below). For a list of packages implementing the
1717
MLJ model API (natively, and in interface packages) see
18-
[here](https://alan-turing-institute.github.io/MLJ.jl/dev/list_of_supported_models/).
18+
[here](https://JuliaAI.github.io/MLJ.jl/dev/list_of_supported_models/).
1919

2020
## Important
2121

@@ -31,7 +31,7 @@ project's [extras] and [targets]. In testing, simply use `MLJBase` in
3131
place of `MLJModelInterface`.
3232

3333
It is assumed the reader has read the [Getting
34-
Started](https://alan-turing-institute.github.io/MLJ.jl/dev/getting_started/) section of
34+
Started](https://JuliaAI.github.io/MLJ.jl/dev/getting_started/) section of
3535
the MLJ manual. To implement the API described here, some familiarity with the following
3636
packages is also helpful:
3737

@@ -52,5 +52,5 @@ packages is also helpful:
5252
In MLJ, the basic interface exposed to the user, built atop the model interface described
5353
here, is the *machine interface*. After a first reading of this document, the reader may
5454
wish to refer to [MLJ
55-
Internals](https://alan-turing-institute.github.io/MLJ.jl/dev/internals/) for context.
55+
Internals](https://JuliaAI.github.io/MLJ.jl/dev/internals/) for context.
5656

docs/src/iterative_models.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -18,11 +18,11 @@ If an MLJ `Machine` is being `fit!` and it is not the first time, then `update`
1818
instead of `fit`, unless the machine `fit!` has been called with a new `rows` keyword
1919
argument. However, `MLJModelInterface` defines a fallback for `update` which just calls
2020
`fit`. For context, see the
21-
[Internals](https://alan-turing-institute.github.io/MLJ.jl/dev/internals/) section of the
21+
[Internals](https://JuliaAI.github.io/MLJ.jl/dev/internals/) section of the
2222
MLJ manual.
2323

2424
Learning networks wrapped as models constitute one use case (see the [Composing
25-
Models](https://alan-turing-institute.github.io/MLJ.jl/dev/composing_models/) section of
25+
Models](https://JuliaAI.github.io/MLJ.jl/dev/composing_models/) section of
2626
the MLJ manual): one would like each component model to be retrained only when
2727
hyperparameter changes "upstream" make this necessary. In this case, MLJ provides a
2828
fallback (specifically, the fallback is for any subtype of `SupervisedNetwork =

docs/src/quick_start_guide.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -18,11 +18,11 @@ understanding of how things work with MLJ. In particular, you are familiar with
1818
- [CategoricalArrays.jl](https://github.com/JuliaData/CategoricalArrays.jl), if working
1919
with finite discrete data, e.g., doing classification; see also the [Working with
2020
Categorical
21-
Data](https://alan-turing-institute.github.io/MLJ.jl/dev/working_with_categorical_data/)
21+
Data](https://JuliaAI.github.io/MLJ.jl/dev/working_with_categorical_data/)
2222
section of the MLJ manual.
2323

2424
If you're not familiar with any one of these points, the [Getting
25-
Started](https://alan-turing-institute.github.io/MLJ.jl/dev/getting_started/) section of
25+
Started](https://JuliaAI.github.io/MLJ.jl/dev/getting_started/) section of
2626
the MLJ manual may help.
2727

2828
*But tables don't make sense for my model!* If a case can be made that
@@ -273,7 +273,7 @@ implementation creates:
273273
affect the outcome of training. It is okay to add "control"
274274
parameters (such as specifying an `acceleration` parameter specifying
275275
computational resources, as
276-
[here](https://github.com/alan-turing-institute/MLJ.jl/blob/master/src/ensembles.jl#L193)).
276+
[here](https://github.com/JuliaAI/MLJ.jl/blob/master/src/ensembles.jl#L193)).
277277
- Use `report` to return *everything else*, including model-specific
278278
*methods* (or other callable objects). This includes feature rankings,
279279
decision boundaries, SVM support vectors, clustering centres,

docs/src/serialization.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ implemented in languages other than Julia.
1010

1111
The MLJ user can serialize and deserialize machines, as she would any other julia
1212
object. (This user has the option of first removing data from the machine. See the [Saving
13-
machines](https://alan-turing-institute.github.io/MLJ.jl/dev/machines/#Saving-machines)
13+
machines](https://JuliaAI.github.io/MLJ.jl/dev/machines/#Saving-machines)
1414
section of the MLJ manual for details.) However, a problem can occur if a model's
1515
`fitresult` (see [The fit method](@ref)) is not a persistent object. For example, it might
1616
be a C pointer that would have no meaning in a new Julia session.

docs/src/static_models.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
A model type subtypes `Static <: Unsupervised` if it does not generalize to new data but
44
nevertheless has hyperparameters. See the [Static
5-
transformers](https://alan-turing-institute.github.io/MLJ.jl/dev/transformers/#Static-transformers)
5+
transformers](https://JuliaAI.github.io/MLJ.jl/dev/transformers/#Static-transformers)
66
section of the MLJ manual for examples. In the `Static` case, `transform` can have
77
multiple arguments and `input_scitype` refers to the allowed scitype of the slurped data,
88
*even if there is only a single argument.* For example, if the signature is

docs/src/trait_declarations.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -128,7 +128,7 @@ MMI.metadata_model(
128128

129129
*Important.* Do not omit the `load_path` specification. If unsure what
130130
it should be, post an issue at
131-
[MLJ](https://github.com/alan-turing-institute/MLJ.jl/issues).
131+
[MLJ](https://github.com/JuliaAI/MLJ.jl/issues).
132132

133133
```@docs
134134
MMI.metadata_pkg

docs/src/type_declarations.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -56,7 +56,7 @@ of `nothing`.
5656
### Hyperparameters for parallelization options
5757

5858
The section [Acceleration and
59-
Parallelism](https://alan-turing-institute.github.io/MLJ.jl/dev/acceleration_and_parallelism/)
59+
Parallelism](https://JuliaAI.github.io/MLJ.jl/dev/acceleration_and_parallelism/)
6060
of the MLJ manual indicates how users specify an option to run an algorithm using
6161
distributed processing or multithreading. A hyperparameter specifying such an option
6262
should be called `acceleration`. Its value `a` should satisfy `a isa AbstractResource`
@@ -66,7 +66,7 @@ run on a GPU is ordinarily indicated with the `CUDALibs()` resource.
6666
### hyperparameter access and mutation
6767

6868
To support hyperparameter optimization (see the [Tuning
69-
Models](https://alan-turing-institute.github.io/MLJ.jl/dev/tuning_models/) section of the
69+
Models](https://JuliaAI.github.io/MLJ.jl/dev/tuning_models/) section of the
7070
MLJ manual) any hyperparameter to be individually controlled must be:
7171

7272
- property-accessible; nested property access allowed, as in

docs/src/unsupervised_models.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ similar fashion. The main differences are:
1717
Static`, in which case there is no restriction. A use-case for `predict` is K-means
1818
clustering that `predict`s labels and `transform`s input features into a space of lower
1919
dimension. See the [Transformers that also
20-
predict](https://alan-turing-institute.github.io/MLJ.jl/dev/transformers/#Transformers-that-also-predict)
20+
predict](https://JuliaAI.github.io/MLJ.jl/dev/transformers/#Transformers-that-also-predict)
2121
section of the MLJ manual for an example.
2222

2323
- The `target_scitype` refers to the output of `predict`, if implemented. A new trait,

docs/src/where_to_put_code.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ to all MLJ users:
1212
algorithms implementing the interface. An example is
1313
[`EvoTrees.jl`](https://github.com/Evovest/EvoTrees.jl/blob/master/src/MLJ.jl). In
1414
this case, it is sufficient to open an issue at
15-
[MLJ](https://github.com/alan-turing-institute/MLJ.jl) requesting
15+
[MLJ](https://github.com/JuliaAI/MLJ.jl) requesting
1616
the package to be registered with MLJ. Registering a package allows
1717
the MLJ user to access its models' metadata and to selectively load
1818
them.

0 commit comments

Comments
 (0)