|
4103 | 4103 | ":reporting_operations" = "`()`" |
4104 | 4104 | ":constructor" = "`IteratedModel`" |
4105 | 4105 |
|
4106 | | -[PartialLeastSquaresRegressor.KPLSRegressor] |
4107 | | -":input_scitype" = "`ScientificTypesBase.Table{<:AbstractVector{<:ScientificTypesBase.Continuous}}`" |
4108 | | -":output_scitype" = "`ScientificTypesBase.Unknown`" |
4109 | | -":target_scitype" = "`Union{ScientificTypesBase.Table{<:AbstractVector{<:ScientificTypesBase.Continuous}}, AbstractVector{<:ScientificTypesBase.Continuous}}`" |
4110 | | -":fit_data_scitype" = "`Tuple{ScientificTypesBase.Table{<:AbstractVector{<:ScientificTypesBase.Continuous}}, Union{ScientificTypesBase.Table{<:AbstractVector{<:ScientificTypesBase.Continuous}}, AbstractVector{<:ScientificTypesBase.Continuous}}}`" |
4111 | | -":predict_scitype" = "`Union{ScientificTypesBase.Table{<:AbstractVector{<:ScientificTypesBase.Continuous}}, AbstractVector{<:ScientificTypesBase.Continuous}}`" |
4112 | | -":transform_scitype" = "`ScientificTypesBase.Unknown`" |
4113 | | -":inverse_transform_scitype" = "`ScientificTypesBase.Unknown`" |
4114 | | -":target_in_fit" = "`true`" |
4115 | | -":is_pure_julia" = "`true`" |
4116 | | -":package_name" = "PartialLeastSquaresRegressor" |
4117 | | -":package_license" = "MIT" |
4118 | | -":load_path" = "PartialLeastSquaresRegressor.KPLSRegressor" |
4119 | | -":package_uuid" = "f4b1acfe-f311-436c-bb79-8483f53c17d5" |
4120 | | -":package_url" = "https://github.com/lalvim/PartialLeastSquaresRegressor.jl" |
4121 | | -":is_wrapper" = "`false`" |
4122 | | -":supports_weights" = "`false`" |
4123 | | -":supports_class_weights" = "`false`" |
4124 | | -":supports_online" = "`false`" |
4125 | | -":docstring" = "A Kernel Partial Least Squares Regressor. A Kernel PLS2 NIPALS algorithms. Can be used mainly for regression." |
4126 | | -":name" = "KPLSRegressor" |
4127 | | -":human_name" = "kpls regressor" |
4128 | | -":is_supervised" = "`true`" |
4129 | | -":prediction_type" = ":deterministic" |
4130 | | -":abstract_type" = "`MLJModelInterface.Deterministic`" |
4131 | | -":implemented_methods" = [":clean!", ":fit", ":predict"] |
4132 | | -":hyperparameters" = "`(:n_factors, :kernel, :width)`" |
4133 | | -":hyperparameter_types" = "`(\"Integer\", \"String\", \"Real\")`" |
4134 | | -":hyperparameter_ranges" = "`(nothing, nothing, nothing)`" |
4135 | | -":iteration_parameter" = "`nothing`" |
4136 | | -":supports_training_losses" = "`false`" |
4137 | | -":reports_feature_importances" = "`false`" |
4138 | | -":deep_properties" = "`()`" |
4139 | | -":reporting_operations" = "`()`" |
4140 | | -":constructor" = "`nothing`" |
4141 | | - |
4142 | | -[PartialLeastSquaresRegressor.PLSRegressor] |
4143 | | -":input_scitype" = "`ScientificTypesBase.Table{<:AbstractVector{<:ScientificTypesBase.Continuous}}`" |
4144 | | -":output_scitype" = "`ScientificTypesBase.Unknown`" |
4145 | | -":target_scitype" = "`Union{ScientificTypesBase.Table{<:AbstractVector{<:ScientificTypesBase.Continuous}}, AbstractVector{<:ScientificTypesBase.Continuous}}`" |
4146 | | -":fit_data_scitype" = "`Tuple{ScientificTypesBase.Table{<:AbstractVector{<:ScientificTypesBase.Continuous}}, Union{ScientificTypesBase.Table{<:AbstractVector{<:ScientificTypesBase.Continuous}}, AbstractVector{<:ScientificTypesBase.Continuous}}}`" |
4147 | | -":predict_scitype" = "`Union{ScientificTypesBase.Table{<:AbstractVector{<:ScientificTypesBase.Continuous}}, AbstractVector{<:ScientificTypesBase.Continuous}}`" |
4148 | | -":transform_scitype" = "`ScientificTypesBase.Unknown`" |
4149 | | -":inverse_transform_scitype" = "`ScientificTypesBase.Unknown`" |
4150 | | -":target_in_fit" = "`true`" |
4151 | | -":is_pure_julia" = "`true`" |
4152 | | -":package_name" = "PartialLeastSquaresRegressor" |
4153 | | -":package_license" = "MIT" |
4154 | | -":load_path" = "PartialLeastSquaresRegressor.PLSRegressor" |
4155 | | -":package_uuid" = "f4b1acfe-f311-436c-bb79-8483f53c17d5" |
4156 | | -":package_url" = "https://github.com/lalvim/PartialLeastSquaresRegressor.jl" |
4157 | | -":is_wrapper" = "`false`" |
4158 | | -":supports_weights" = "`false`" |
4159 | | -":supports_class_weights" = "`false`" |
4160 | | -":supports_online" = "`false`" |
4161 | | -":docstring" = "A Partial Least Squares Regressor. Contains PLS1, PLS2 (multi target) algorithms. Can be used mainly for regression." |
4162 | | -":name" = "PLSRegressor" |
4163 | | -":human_name" = "pls regressor" |
4164 | | -":is_supervised" = "`true`" |
4165 | | -":prediction_type" = ":deterministic" |
4166 | | -":abstract_type" = "`MLJModelInterface.Deterministic`" |
4167 | | -":implemented_methods" = [":clean!", ":fit", ":predict"] |
4168 | | -":hyperparameters" = "`(:n_factors,)`" |
4169 | | -":hyperparameter_types" = "`(\"Int64\",)`" |
4170 | | -":hyperparameter_ranges" = "`(nothing,)`" |
4171 | | -":iteration_parameter" = "`nothing`" |
4172 | | -":supports_training_losses" = "`false`" |
4173 | | -":reports_feature_importances" = "`false`" |
4174 | | -":deep_properties" = "`()`" |
4175 | | -":reporting_operations" = "`()`" |
4176 | | -":constructor" = "`nothing`" |
4177 | | - |
4178 | 4106 | [PartitionedLS.PartLS] |
4179 | 4107 | ":input_scitype" = "`Union{ScientificTypesBase.Table{AbstractVector{ScientificTypesBase.Continuous}}, AbstractMatrix{ScientificTypesBase.Continuous}}`" |
4180 | 4108 | ":output_scitype" = "`ScientificTypesBase.Unknown`" |
|
0 commit comments