@@ -710,7 +710,7 @@ Train the machine using `fit!(mach, rows=...)`.
710710 could be set to any robust estimator from `CovarianceEstimation.jl`.
711711- `cov_b::CovarianceEstimator`=SimpleCovariance: The same as `cov_w` but for the between-class
712712 covariance (used in computing between-class scatter matrix, Sb).
713- - `out_dim ::Int=0`: The output dimension, i.e dimension of the transformed space,
713+ - `outdim ::Int=0`: The output dimension, i.e dimension of the transformed space,
714714 automatically set if 0 is given (default).
715715- `regcoef::Float64=1e-6`: The regularization coefficient (default value 1e-6). A positive
716716 value `regcoef * eigmax(Sw)` where `Sw` is the within-class scatter matrix, is added
@@ -819,7 +819,7 @@ Train the machine using `fit!(mach, rows=...)`.
819819 could be set to any robust estimator from `CovarianceEstimation.jl`.
820820- `cov_b::CovarianceEstimator`=SimpleCovariance: The same as `cov_w` but for the between-class
821821 covariance (used in computing between-class scatter matrix, Sb).
822- - `out_dim ::Int=0`: The output dimension, i.e dimension of the transformed space,
822+ - `outdim ::Int=0`: The output dimension, i.e dimension of the transformed space,
823823 automatically set if 0 is given (default).
824824- `regcoef::Float64=1e-6`: The regularization coefficient (default value 1e-6). A positive
825825value `regcoef * eigmax(Sw)` where `Sw` is the within-class covariance estimator, is added
@@ -928,9 +928,9 @@ Train the machine using `fit!(mach, rows=...)`.
928928
929929- `normalize=true`: Option to normalize the between class variance for the number of
930930 observations in each class, one of `true` or `false`.
931- - `out_dim `: the dimension of the space to be used by `predict` and
931+ - `outdim `: the dimension of the space to be used by `predict` and
932932 `transform` methods, automatically set if `0` is given (default). If a non-zero
933- `out_dim ` is passed, then the actual output dimension used is `min(rank, out_dim )`
933+ `outdim ` is passed, then the actual output dimension used is `min(rank, outdim )`
934934 where `rank` is the rank of the within-class covariance matrix.
935935- `dist=Distances.SqEuclidean()`: The distance metric to use when performing
936936 classification (to compare the distance between a new point and centroids in
@@ -1021,9 +1021,9 @@ Train the machine using `fit!(mach, rows=...)`.
10211021
10221022- `normalize=true`: Option to normalize the between class variance for the number of
10231023 observations in each class, one of `true` or `false`.
1024- - `out_dim `: the dimension of the space to be used by `predict` and
1024+ - `outdim `: the dimension of the space to be used by `predict` and
10251025 `transform` methods, automatically set if `0` is given (default). If a non-zero
1026- `out_dim ` is passed, then the actual output dimension used is `min(rank, out_dim )`
1026+ `outdim ` is passed, then the actual output dimension used is `min(rank, outdim )`
10271027 where `rank` is the rank of the within-class covariance matrix.
10281028- `priors::Union{Nothing, Vector{Float64}}=nothing`: For use in prediction with Baye's
10291029 rule. If `priors = nothing` then `priors` are estimated from the class proportions
0 commit comments